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Warm-up: Springer theory

G — Lie group, g = Lie(G), B C G — Borel subgroup,
B ~ G/B — flag variety, N’ C g — nilpotent cone.

T*B~N = {(x,b)|x €N, b>x}
Steinberg variety:
Z:=NxyN={(xbb)|xcbnt'}c T*Bx TB
It carries a diagonal action of G x C*, where C* acts by dilation

along the fibers.

Let KE*C*(Z) be the equivariant K-theory of the Steinberg
variety. The convolution product endows it with an algebra

structure, and
GxC*
K- * (Z) = Haffv

where H,g is the affine Hecke algebra.
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Variety of triples

Braverman, Finkelberg, and Nakajima define K-theoretic Coulomb
branches (of 4d N’ =2 SUSY gauge theories compactified on a
circle) in the spirit of “generalized affine Springer theory”.

G — complex reductive group, N — its complex representation
Set K = C((2)), O =C|[z]]
Grg = G(K)/G(O) — affine Grassmannian.

Variety of triples:

Ren = {(lg]. 5) |g] € Gre.s € N[[z]] N gN[[z]]}

Similarly to the Steinberg variety, Rg n has a convolution, and
admits a G(O) x C*-action, where C* acts via loop rotation.
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K-theoretic Coulomb branches

Theorem (Braverman — Finkelberg — Nakajima)

.A%7N — K.G(O)N(C (:RG’N)

is an associative algebra, commutative at q = 1.

Definition

The K-theoretic Coulomb branch Mg y = Spec(AC(’;:,\ll .

| \

One can use the equivariant localization to obtain an embedding
q q loc
Agn = (AT0)°

where T C G is the maximal torus, and (A% 0)’°° is isomorphic to
an algebra of g-difference operators in variables A;, localized at
root hyperplanes A; — A;.
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Minuscule monopole operators

How does one describe A((’; v explicitly?

First, there is a commutative subalgebra
G(O)xCX
KO (pt) € AL
generated by symmetric functions in A;.

Second, affine Grassmannian admits stratification
Grg =| | Grg,  Grg=6(0)2"],  Grg =UuxCrg,

where

Gr)(‘; is smooth <— Gré‘; = Gr)(‘; <= \is minuscule.
Using the natural projection
T fRG’N — RG’O = GI"G,
for A minuscule one defines the minuscule monopole operator
[Oxa] € AZJ\, where R* = 77 HGrR).
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Quiver gauge theories

Let ' = (g, 1) be a quiver with the set of vertices g, and the set
of arrows I'1, and V be a p-graded vector space. (For simplicity,
until the very end of the talk we will consider quivers without
framing.)

Let us set

G=]]GLVv), N=]]Hom(V;, V).

i€l i—j

Let dim(V;) = d; for each node i € 5. We denote the n-th
fundamental coweight of GL(V;) by w; », and define

in= Win— Wid;-

Let A be a general minuscule G-coweight, then its restriction to
GL(V;) is either w; , or w?, for some 1 < n < d.
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Generators in quiver gauge theories

Consider the minuscule monopole operators

E n — [ORW;,,,] and F,'7,, == [Oggw?n]'

Theorem (Weekes'19)

Quantized Coulomb branch A = AZ,N of a quiver gauge theory is
generated by

o all (dressed) minuscule monopole operators over
K.G(O)XICX (pt),

@ (dressed) monopole operators E; 1, Fi1, where i € [y, over
G(0)=xC*
KO (pt) ®cpq.0-1 C(a)-

"Dressed” here means that the bundles O are twisted by a
wedge power of a tautological bundle.
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Monopole operators in quiver gauge theories

Under localization, the operator E; , reads

S | Hﬁ(uq/\i,,/\;;) Dy

Jc{1,...,di}j+i \reds=1
[J|=n

where

iy =[[]TIQ - NN D

red s¢J

Note that E; , takes especially simple form if i € ['g is a sink:

n
Ein+— Z Qi Eip— Z H(l — Ais/Nir) ' Dir.

Jc{1,....d;} r=1 s#r

Same goes for F; ,, but it is the simplest when i/ € I is a source.
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Example: sDAHA

Let I be a quiver with one vertex and one loop, V = C9. Then
G = GL(d) and N = End(C¥) is the adjoint representation.

d
A9~ (C[q:tl] <Ai7 Di>i:1
70 D,‘/\j = q‘;U/\jD,-

KI(p) = CAE,  and  KS(pt) =~ (KI(pt)) "

Oxd= Y T S—r

JC{1,....d} red s¢J
[J|=n

Note that
Aﬁ ~ sDAHA(GL,).
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Coulomb branches and clusters

Conjecture (Gaiotto)

K-theoretic Coulomb branches are cluster varieties.

In physics, the Coulomb branch M¢ = Spec(Ag n) is the Coulomb
branch of moduli of vacua in a 4d N/ =2 G-gauge theory on
R3 x St

BPS quiver of the theory <— quiver of the cluster variety.

Theorem (Schrader-S. 'in progress)

For each quiver I, there is a quantum cluster variety L(ér and an
embedding
. 14 q
L Ap = ]LQr'

Under v, operators E; , and F; , become cluster monomials,
provided that i € ¢ has no adjacent loops in I;.
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Cluster varieties

A cluster variety is an affine Poisson variety with an (in general
infinite) collection of charts such that

e each chart is a torus (C*)

@ the Poisson brackets between toric coordinates are
log-canonical:

{yi,yi} = €yyiy;

@ gluing data is given by subtraction-free rational expressions,
the cluster mutations. A cluster mutation in direction k
only affects yy itself, and coordinates that have nontrivial
Poisson brackets with yj.

It is convenient to encode cluster charts by quivers with vertices
corresponding to coordinates y;, and € being the adjacency matrix.

Alexander Shapiro Cluster structure on K-theoretic Coulomb branches



Quantum cluster charts

Let A =~ Z9 be a lattice with a skew form (-,-). Define a quantum
torus

T9=Z[g ] (Yahen,  aM VAV = Yo

A choice of basis {ej} € A defines a quiver
Q:(QO)Ql)u Qoz{la‘”ud}a #(I_>J)Z<elue_]>
and the corresponding quantum cluster chart

7—5 _ Z[q:tl] <Ye,->7:1 ’ q<ei,ej> Ye,- Yej = Yei+ej = q<ej7ei> Yej Ye;-

A mutation M; in direction k € Qy is the change of basis

/ — €k, i=k
e, = )
I e + [Eik]+ek7 ! 7& ka

where [a]4 = max(a,0).
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Quantum cluster varieties

To each mutation one associates a birational automorphism
/ﬁi = Adya(y,) of T9, where

o

Vi(z) = [T+ ¢ 27t w9(eP2) = (1 +g2)¥(2)
n=1

The quantum cluster mutations i is the change of basis 1,
followed by ui.

Example: for a quiver @ = {1 — 2}, we have Y2Y; = ¢°Y1 Y2,
12(Y2) = Y5 b, and

p2(Y1) = WI(Y2) YiW9(Ya) ™t = Yi(1 + qYa).

Definition

The quantum cluster variety L9 = L‘é is a subalgebra of 79,
consisting of elements a € 79, which stay in 79 under any finite
sequence of cluster mutations.
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Positive representations

Under parametrization
g=e", B eR:0\Q
there is a homomorphism
TS—H Y ™

where H = C (§1, ..., 7q4) is the Heisenberg algebra with relations

97, 9] = (2mi) Fep.
The Heisenberg algebra ‘H has irreducible Hilbert space
representation in which the generators Y; act by (unbounded)
positive self-adjoint operators. Half of them act by multiplication
operators, another half as shifts.

Fock—Goncharov: if |g| = 1, pull-backs of these representations
to IL9 are unitary equivalent. This defines a canonical positive
representation of IL9.
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Non-compact quantum dilogarithm

Problem: W9(z) diverges at |g| = 1.

Replace W9(z) by the non-compact quantum dilogarithm ¢(z).
It is the unique solution to the pair of difference equations

o(z — ib*1/2) = (1 + 2™ %) (2 + ib*12).

Each y, acts by a self-adjoint operator and
zER = |p(z)| =1,
hence mutation in direction k gives rise to a unitary operator:

quantum mutation in direction k — o(—9,) 7!

Note: Quantum dilogarithm satisfies the pentagon identity:

551 = 5 = @(B)P(%) = P(R)plp + D) (5)
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Coxeter—Toda phase space

Back to Coulomb branches: how does one construct Qr out of 7

Let us consider the simplest example: G = GL,, N = 0.

Theorem (Bezrukavnikov — Finkelberg — Mirkovi¢, '05)

Algebra A%L" o s isomorphic to the quantized phase space of the
GL, Coxeter—Toda integrable system (a.k.a. quantum open
relativistic Toda).

Theorem (Berenstein — Zelevinsky, '03)

The quantized phase space of the GL, Coxeter—Toda integrable
system is isomorphic to the quantum cluster algebra ]L‘é with the
quiver shown on the next slide.
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Representation of the Coxeter — Toda quiver

The Coxeter—Toda quiver:

X2 — X1

p1+x1 O——=0 p1—Pp2+Xx1—X

X3—X2 G—=33 p2—pP3+tXxX2—Xx3

X4 —X3 C—XD p3—ps+X3—Xg

‘\@ pPn—u

Heisenberg algebra: H, = C[¢*!] (x;, pJ-)Jf’:l, [pj, x] = (2mi) Lk,
pj acts on L2(R") via

. 1 0
Pt oni x;’
For example,
Yo s e2mble—x1) and Yy s g2mbpitx)
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Baxter operator

Theorem (Schrader-S.)

Consider the Baxter operator

Qn(u) = p(u—pn)p(u—pa—1+xn—Xn—1)(u—pn_1) - .. p(u—p1)

obtained by mutating consecutively at 0,1,2,...,2n— 2. Then
@ Unitary operators Q,(u) satisfy

[@n(u), Qn(v)] = 0,

Q IfAn(u) = Qn(u—ib/2)Q,(u+ ib/2)~1, then one can expand
An(u) = HUX, U= ™™
k=0

and the commuting operators Hi, ..., H, quantize the GL,
Coxeter—Toda Hamiltonians.
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Dehn twist

Additionally, there is a Dehn twist operator realized as mutations
. H 2
at all even nodes postcomposed with e™ (Pi++p3).

v 2
Th = e”’(p1+"’+p")go(x2 —Xx1) ... @(Xn — Xp—1)
which commutes with the Baxter operator

[7n, Qu(u)] =0

Problem: Construct complete set of joint eigenfunctions (a.k.a.
the b-Whittaker functions) for operators Qn(u), 7y.
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b-Whittaker transform

Set R,(u) to be the same as the Baxter operator Q,(u) but
without the last mutation. We then define

Wa(x) := Rn(ch — An) ... Ra(ch — A2) - €270,

where
A= (A1, n), X = (X1,...,Xn),

and ¢, = i(b+ b71)/2.
Define the b-Whittaker transform as follows:
W: L2(R") — L2, (R", m(A)d),

sym

VA = [ WD (0)f(x)dx
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Intertwining properties

Theorem (Schrader-S.)

The b-Whittaker transform is a unitary equivalence. Moreover

WorT = eﬂ—i()‘%'i"“'i_/\%) o W
Wo Qn(u Hcp u—
W o H( = ek(/\fl)oW

Wo Yo, 1= ZHl—/\k//\ oW,

J=1 k#j

where ey is the elementary symmetric function and \ = e>™P\,
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Converting quivers [ ~~ Or

Let I' be a gauge theory quiver. We associate to it a cluster quiver
9r by the following rule.

@ To each node / € I with label n;, we associate a GLp,
Coxeter—Toda quiver Q;;

@ For each directed edge e: i — j in ['1, we glue the top of Q;
to the bottom of Q; as shown.

Pia+ 5,1 [ Je—O=

Xj‘.
Pj,3 — Pij1

prtx [Je—O=0 p—p2+x1—x Pi,1+ xi1
=¥ Xi o Xi,e

X4 — X3 pP3 — ps+x3 — X
P4

Alexander Shapiro Cluster structure on K-theoretic Coulomb branches



From Coulomb branches to clusters

o Localization embeds A into rational g-difference operators in
/\,',J', withie€lgand 1 <j <d;

o Applying inverse b- Whittaker transform W~ at each node
we embed A? into polynomial g-difference operators;

o Need to construct a map Af — 75 which makes the diagram
commutative with respect to positive representation of Tqr;

@ Need to show that images of minuscule monopole operators
land in the universally Laurent algebra ]Lqu.

Then at each node we send

o e (A1) — H,Ed’) (in cluster terms, H§") = EJ-QEZ Vet te);

@ Ejito Yo, ifi€lgisasink (and similar formula for F;1);

@ "dressing” is achieved by applying Dehn twists 7..

It is easy to express H,((d") and Y5,_1 in the so-called cluster
A-variables, certain elements in ]L‘ér.
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Orientation of quivers

Note: at this point we'd be (almost) done if we knew how to swap
orientation of arrows in I'.

On the Coulomb side, changing the arrow i — j to j — i
corresponds to conjugating monopole operators by

n; nj

TTTT eOs = 2ir)- (*)

r=1s=1

Need to find a sequence of mutations that acts on the product
() ()
U (x0T (x5)

with the eigenvalue ().
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Baxter operators revisited

Recall, that for d; = 1 we have already seen such a sequence,
namely the Baxter operator

n

@n(x, Py WS (x) = [T (1 — M)W (x).

j=1

, 1 ; .
Since \Ug\ )(x) = %™ we can also write

Qn(x. P o)W ()W D (v HVJM MV x)wD(y).

Moreover, Baxter operator is a sequence of mutations.

Alexander Shapiro Cluster structure on K-theoretic Coulomb branches



= PGL4

Example: G




Bi-fundamental Baxter operator

Figure: gl, x gl, Toda Figure: Exchange sequence.
Mutate column-by-column, reading left to right. In each column
mutate at circled vertices first bottom to top, and then in the rest

top to bottom.
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Bi-fundamental Baxter operator

RRLF
& @ @

o

B

Figure: gl, x gl, Toda Figure: gl, x gl, Toda

Result of applying the bi-fundamental Baxter operator.
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Overview

@ Given a gauge quiver [ together with an orientation o, we have
a recipe to construct the corresponding cluster quiver Or.

@ We have an injective homomorphism ¢,: Af — Frac <}L‘ér>.

@ 1, and ¢, are related by applying sequences of bi-fundamental
Baxter operators.

@ If I does not have loops, we show that ¢, lands in IL"QF by
replacing it with different ¢,/ for different generators of Af.

Work in progress, joint with Di Francesco, Kedem, Schrader:

One has .AF’ — L9 o when [ consists of one node and one loop.
Moreover, the natural GL(Z)-action on A{ is realized via cluster
transformations. In particular, Toda Hamiltonians and monopole
operators are mutation equivalent, which settles the case of I'
having loops.
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Donaldson—Thomas invariants

Each cluster variety has an associated 3-CY category given by the
quiver Q with generic potential. Its DT-invariants can be collected
into a generating function Eg. If there exists a sequence of cluster
mutations ©9, which at the end changes all logarithmic labels of
cluster variables to their negatives, one has 114 = Adg, .

For quivers Qr constructed from gauge quivers [ without loops,
such a sequence can be obtained by

@ changing orientation of every arrow in I;
@ applying certain amount of Dehn twists at every node.

Presumably, Eg counts the BPS states of the corresponding quiver
gauge theory.
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Quantum groups as Coulomb branches

Another example of a quantum K-theoretic Coulomb branch is the
quantum group Uq(sl,). The corresponding gauge quiver is as
follows (node with C® is the framing node: G does not involve
GLs, but additional equivariance is taken with respect to the
maximal torus T € GL(5)).

The corresponding cluster quiver Qr is
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Gelfand—Tsetlin subalgebra

The chain of embeddings
gl Cglb C--- Colyy Caly,
where gl sits in the top-left corner, induces embeddings

Ug(aly) C Uq(gla) C - -+ C Ug(al)-

Therefore, if Zy is the center of U(gly), then

[Zj,Z] =0 for all 1<j,k<n.

The Gelfand-Tsetlin subalgebra GZ, C Uy(gl,) is a
commutative subalgebra generated by Z3,..., Z,.

Any finite dimensional irreducible representation of Ug(gl,,) breaks
up into 1-dimensional weight spaces for GZ,, where each weight
space has multiplicity < 1.
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Positive representations of quantum groups

Theorem (Schrader-S.)

@ Representations of Ugy(sl,) coming from its cluster structure
coincide with its positive representations studied by Frenkel-Ip
and Ponsot—Teschner.

o Positive representations of Uq(sl,) are equivalent to its
Gelfand—-Tsetlin representations studied by
Gerasimov—Kharchev—-Lebedev—Oblezin via applying Whittaker
transform at every node.

@ Toda Hamiltonians at the k-th node generate the subalgebra
Zi C Uqg(gly), and embedding Uq(gly) — Uq(gl,,) is realized
via applying W to Zj.

Corollary

Positive representations of Uq(sl,) decompose with multiplicity
one with respect to its Gelfand—Tsetlin subalgebra.
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Thank you!
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