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Warm-up: Springer theory

G — Lie group, g = Lie(G ), B ⊂ G — Borel subgroup,
B ' G/B — flag variety, N ⊂ g — nilpotent cone.

T ∗B ' Ñ := {(x , b) | x ∈ N , b 3 x}

Steinberg variety:

Z := Ñ ×N Ñ =
{

(x , b, b′) | x ∈ b ∩ b′
}
⊂ T ∗B × T ∗B

It carries a diagonal action of G × C×, where C× acts by dilation
along the fibers.

Let KG×C×
• (Z ) be the equivariant K -theory of the Steinberg

variety. The convolution product endows it with an algebra
structure, and

KG×C×
• (Z ) ' Haff ,

where Haff is the affine Hecke algebra.
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Variety of triples

Braverman, Finkelberg, and Nakajima define K -theoretic Coulomb
branches (of 4d N = 2 SUSY gauge theories compactified on a
circle) in the spirit of “generalized affine Springer theory”.

G — complex reductive group, N — its complex representation

Set K = C((z)), O = C[[z ]]

GrG = G (K)/G (O) — affine Grassmannian.

Variety of triples:

RG ,N =
{

([g ], s) | [g ] ∈ GrG , s ∈ N[[z ]] ∩ gN[[z ]]
}

Similarly to the Steinberg variety, RG ,N has a convolution, and
admits a G (O) oC×-action, where C× acts via loop rotation.
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K -theoretic Coulomb branches

Theorem (Braverman – Finkelberg – Nakajima)

A
q
G ,N := K

G(O)oC×
• (RG ,N)

is an associative algebra, commutative at q = 1.

Definition

The K -theoretic Coulomb branch MG ,N = Spec(Aq=1
G ,N).

One can use the equivariant localization to obtain an embedding

A
q
G ,N ↪→ (Aq

T ,0)loc ,

where T ⊂ G is the maximal torus, and (Aq
T ,0)loc is isomorphic to

an algebra of q-difference operators in variables Λi , localized at
root hyperplanes Λi − Λj .
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Minuscule monopole operators

How does one describe A
q
G ,N explicitly?

First, there is a commutative subalgebra

K
G(O)oC×
• (pt) ⊂ A

q
G ,N

generated by symmetric functions in Λj .

Second, affine Grassmannian admits stratification

GrG =
⊔

λ
GrλG , GrλG = G (O)[zλ], GrλG = tµ≤λGrµG ,

where

GrλG is smooth ⇐⇒ GrλG = GrλG ⇐⇒ λ is minuscule.

Using the natural projection

π : RG ,N −→ RG ,0 = GrG ,

for λ minuscule one defines the minuscule monopole operator

[ORλ ] ∈ A
q
G ,N where Rλ = π−1(GrλG ).
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Quiver gauge theories

Let Γ = (Γ0, Γ1) be a quiver with the set of vertices Γ0, and the set
of arrows Γ1, and V be a Γ0-graded vector space. (For simplicity,
until the very end of the talk we will consider quivers without
framing.)

Let us set

G =
∏
i∈Γ0

GL(Vi ), N =
∏
i→j

Hom(Vi ,Vj).

Let dim(Vi ) = di for each node i ∈ Γ0. We denote the n-th
fundamental coweight of GL(Vi ) by $i ,n, and define

$∗i ,n = $i ,n −$i ,di .

Let λ be a general minuscule G -coweight, then its restriction to
GL(Vi ) is either $i ,n or $∗i ,n for some 1 ≤ n ≤ di .
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Generators in quiver gauge theories

Consider the minuscule monopole operators

Ei ,n = [OR
$i,n ] and Fi ,n = [O

R
$∗

i,n
].

Theorem (Weekes’19)

Quantized Coulomb branch A
q
Γ = A

q
G ,N of a quiver gauge theory is

generated by

all (dressed) minuscule monopole operators over

K
G(O)oC×
• (pt);

(dressed) monopole operators Ei ,1, Fi ,1, where i ∈ Γ0, over

K
G(O)oC×
• (pt)⊗C[q,q−1] C(q).

”Dressed” here means that the bundles ORλ are twisted by a
wedge power of a tautological bundle.

Alexander Shapiro Cluster structure on K -theoretic Coulomb branches



Monopole operators in quiver gauge theories

Under localization, the operator Ei ,n reads

Ei ,n 7−→
∑

J⊂{1,...,di}
|J|=n

∏
j←i

∏
r∈J

dj∏
s=1

(
1 + qΛi ,rΛ−1

j ,s

) ·Di ,J

where
Di ,J =

∏
r∈J

∏
s 6∈J

(1− Λi ,sΛ−1
i ,r )−1Di ,r .

Note that Ei ,n takes especially simple form if i ∈ Γ0 is a sink:

Ei ,n 7−→
∑

J⊂{1,...,di}
|J|=n

Di ,J , Ei ,1 7−→
n∑

r=1

∏
s 6=r

(1− Λi ,s/Λi ,r )−1Di ,r .

Same goes for Fi ,n, but it is the simplest when i ∈ Γ0 is a source.
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Example: sDAHA

Let Γ be a quiver with one vertex and one loop, V = Cd . Then
G = GL(d) and N = End(Cd) is the adjoint representation.

A
q
T ,0 '

C[q±1] 〈Λi ,Di 〉di=1

DiΛj = qδij ΛjDi

KT
• (pt) ' C 〈Λi 〉di=1 and KG

• (pt) '
(
KT
• (pt)

)Sd
[ORωn ] =

∑
J⊆{1,...,d}
|J|=n

∏
r∈J

∏
s /∈J

tΛr − Λs

Λr − Λs
Dr

Note that
A

q
Γ ' sDAHA(GLn).
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Coulomb branches and clusters

Conjecture (Gaiotto)

K -theoretic Coulomb branches are cluster varieties.

In physics, the Coulomb branch MC = Spec(AG ,N) is the Coulomb
branch of moduli of vacua in a 4d N = 2 G -gauge theory on
R3 × S1.

BPS quiver of the theory ←→ quiver of the cluster variety.

Theorem (Schrader-S. ’in progress)

For each quiver Γ, there is a quantum cluster variety Lq
QΓ

and an
embedding

ι : Aq
Γ ↪→ Lq

QΓ
.

Under ι, operators Ei ,n and Fi ,n become cluster monomials,
provided that i ∈ Γ0 has no adjacent loops in Γ1.
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Cluster varieties

A cluster variety is an affine Poisson variety with an (in general
infinite) collection of charts such that

each chart is a torus (C×)d

the Poisson brackets between toric coordinates are
log-canonical:

{yi , yj} = εijyiyj

gluing data is given by subtraction-free rational expressions,
the cluster mutations. A cluster mutation in direction k
only affects yk itself, and coordinates that have nontrivial
Poisson brackets with yk .

It is convenient to encode cluster charts by quivers with vertices
corresponding to coordinates yj , and ε being the adjacency matrix.
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Quantum cluster charts

Let Λ ' Zd be a lattice with a skew form 〈·, ·〉. Define a quantum
torus

T q = Z[q±1] 〈Yλ〉λ∈Λ , q〈λ,µ〉YλYµ = Yλ+µ.

A choice of basis {ej} ∈ Λ defines a quiver

Q = (Q0,Q1), Q0 = {1, . . . , d} , #(i → j) = 〈ei , ej〉

and the corresponding quantum cluster chart

T q
Q = Z[q±1] 〈Yei 〉

d
i=1 , q〈ei ,ej〉YeiYej = Yei+ej = q〈ej ,ei〉YejYei .

A mutation µ′k in direction k ∈ Q0 is the change of basis

e ′i =

{
−ek , i = k

ei + [εik ]+ek , i 6= k,

where [a]+ = max(a, 0).
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Quantum cluster varieties

To each mutation one associates a birational automorphism
µ]k = AdΨq(Yk ) of T q, where

Ψq(z) =
∞∏
n=1

(1 + q2n+1z)−1, Ψq(q2z) = (1 + qz)Ψq(z)

The quantum cluster mutations µk is the change of basis µ′k
followed by µ]k .

Example: for a quiver Q = {1→ 2}, we have Y2Y1 = q2Y1Y2,
µ2(Y2) = Y−1

2 , and

µ2(Y1) = Ψq(Y2)Y1Ψq(Y2)−1 = Y1(1 + qY2).

Definition

The quantum cluster variety Lq = Lq
Q is a subalgebra of T q,

consisting of elements a ∈ T q, which stay in T q under any finite
sequence of cluster mutations.
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Positive representations

Under parametrization

q = eπib
2
, b2 ∈ R>0 \Q

there is a homomorphism

T q
Q → H Yj 7→ e2πbŷj .

where H = C 〈ŷ1, . . . , ŷd〉 is the Heisenberg algebra with relations

[ŷj , ŷk ] = (2πi)−1εjk .

The Heisenberg algebra H has irreducible Hilbert space
representation in which the generators Yj act by (unbounded)
positive self-adjoint operators. Half of them act by multiplication
operators, another half as shifts.

Fock–Goncharov: if |q| = 1, pull-backs of these representations
to Lq are unitary equivalent. This defines a canonical positive
representation of Lq.
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Non-compact quantum dilogarithm

Problem: Ψq(z) diverges at |q| = 1.

Replace Ψq(z) by the non-compact quantum dilogarithm ϕ(z).
It is the unique solution to the pair of difference equations

ϕ(z − ib±1/2) = (1 + e2πb±1z)ϕ(z + ib±1/2).

Each ŷk acts by a self-adjoint operator and

z ∈ R =⇒ |ϕ(z)| = 1,

hence mutation in direction k gives rise to a unitary operator:

quantum mutation in direction k −→ ϕ(−ŷk)−1

Note: Quantum dilogarithm satisfies the pentagon identity:

[p̂, x̂ ] =
1

2πi
=⇒ ϕ(p̂)ϕ(x̂) = ϕ(x̂)ϕ(p̂ + x̂)ϕ(p̂)
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Coxeter–Toda phase space

Back to Coulomb branches: how does one construct QΓ out of Γ?

Let us consider the simplest example: G = GLn, N = 0.

Theorem (Bezrukavnikov – Finkelberg – Mirković, ’05)

Algebra A
q
GLn,0

is isomorphic to the quantized phase space of the
GLn Coxeter–Toda integrable system (a.k.a. quantum open
relativistic Toda).

Theorem (Berenstein – Zelevinsky, ’03)

The quantized phase space of the GLn Coxeter–Toda integrable
system is isomorphic to the quantum cluster algebra Lq

Q with the
quiver shown on the next slide.
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Representation of the Coxeter – Toda quiver

The Coxeter–Toda quiver:

p1 + x1

x2 − x1

x3 − x2

x4 − x3

p1 − p2 + x1 − x2

p2 − p3 + x2 − x3

p3 − p4 + x3 − x4

pn − u

7

2 1

4 3

6 5

0

Heisenberg algebra: Hn = C[q±1] 〈xj , pj〉nj=1, [pj , xk ] = (2πi)−1δjk ,

pj acts on L2(Rn) via

pj 7→
1

2πi

∂

∂xj
.

For example,

Y6 7→ e2πb(x2−x1) and Y7 7→ e2πb(p1+x1)
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Baxter operator

Theorem (Schrader–S.)

Consider the Baxter operator

Qn(u) = ϕ(u−pn)ϕ(u−pn−1 +xn−xn−1)ϕ(u−pn−1) . . . ϕ(u−p1)

obtained by mutating consecutively at 0, 1, 2, . . . , 2n − 2. Then

1 Unitary operators Qn(u) satisfy

[Qn(u),Qn(v)] = 0,

2 If An(u) = Qn(u − ib/2)Qn(u + ib/2)−1, then one can expand

An(u) =
n∑

k=0

HkU
k , U := e2πbu

and the commuting operators H1, . . . ,Hn quantize the GLn
Coxeter–Toda Hamiltonians.
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Dehn twist

Additionally, there is a Dehn twist operator realized as mutations
at all even nodes postcomposed with eπi(p

2
1+···+p2

n):

τn = eπi(p
2
1+···+p2

n)ϕ(x2 − x1) . . . ϕ(xn − xn−1)

which commutes with the Baxter operator

[τn,Qn(u)] = 0

Problem: Construct complete set of joint eigenfunctions (a.k.a.
the b -Whittaker functions) for operators Qn(u), τn.
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b -Whittaker transform

Set Rn(u) to be the same as the Baxter operator Qn(u) but
without the last mutation. We then define

Ψλ(x) := Rn(cb − λn) . . .R2(cb − λ2) · e2πb(λ·x),

where
λ = (λ1, . . . , λn), x = (x1, . . . , xn),

and cb = i(b + b−1)/2.

Define the b -Whittaker transform as follows:

W : L2(Rn) −→ L2
sym(Rn,m(λ)dλ),

(W[f ])(λ) =

∫
Rn

Ψ
(n)
λ (x)f (x)dx
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Intertwining properties

Theorem (Schrader–S.)

The b -Whittaker transform is a unitary equivalence. Moreover

W ◦ τ = eπi(λ
2
1+···+λ2

n) ◦W,

W ◦ Qn(u) =
n∏

j=1

ϕ(u − λj) ◦W,

W ◦ H(n)
k = ek(Λ−1) ◦W,

W ◦ Y2n−1 =
n∑

j=1

∏
k 6=j

1

1− Λk/Λj
Dj ◦W,

where ek is the elementary symmetric function and Λ = e2πbλ.

Alexander Shapiro Cluster structure on K -theoretic Coulomb branches



Converting quivers Γ QΓ

Let Γ be a gauge theory quiver. We associate to it a cluster quiver
QΓ by the following rule.

To each node i ∈ Γ with label ni , we associate a GLni
Coxeter–Toda quiver Qi ;

For each directed edge e : i → j in Γ1, we glue the top of Qi

to the bottom of Qj as shown.

xi,•

p1 − p2 + x1 − x2p1 + x1

p3 − p4 + x3 − x4x4 − x3

p4

xi,•

pj,3 − pi,1

pi,1 + xi,1

pj,1 + xj,1

xj,•
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From Coulomb branches to clusters

Localization embeds A
q
Γ into rational q-difference operators in

Λi ,j , with i ∈ Γ0 and 1 ≤ j ≤ di ;

Applying inverse b- Whittaker transform W−1 at each node
we embed A

q
Γ into polynomial q-difference operators;

Need to construct a map A
q
Γ → T

q
QΓ

which makes the diagram

commutative with respect to positive representation of T q
QΓ

;

Need to show that images of minuscule monopole operators
land in the universally Laurent algebra Lq

QΓ
.

Then at each node we send

ek(Λ−1) 7−→ H
(di )
k (in cluster terms, H

(n)
1 =

∑2n−2
j=0 Ye0+···+ej );

Ei ,1 to Y2n−1 if i ∈ Γ0 is a sink (and similar formula for Fi ,1);

”dressing” is achieved by applying Dehn twists τdi .

It is easy to express H
(di )
k and Y2n−1 in the so-called cluster

A-variables, certain elements in Lq
QΓ

.
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Orientation of quivers

Note: at this point we’d be (almost) done if we knew how to swap
orientation of arrows in Γ.

On the Coulomb side, changing the arrow i → j to j → i
corresponds to conjugating monopole operators by

ni∏
r=1

nj∏
s=1

ϕ(λj ,s − λi ,r ). (∗)

Need to find a sequence of mutations that acts on the product

Ψ
(ni )
λi,•(x i ,•)Ψ

(nj )
λj,•

(x j ,•)

with the eigenvalue (∗).
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Baxter operators revisited

Recall, that for dj = 1 we have already seen such a sequence,
namely the Baxter operator

Qn(x ,px ;µ)Ψ
(n)
λ (x) =

n∏
j=1

ϕ(µ− λj)Ψ
(n)
λ (x).

Since Ψ
(1)
λ (x) = e2πiλx , we can also write

Qn(x ,px ; py )Ψ
(n)
λ (x)Ψ(1)

µ (y) =
n∏

j=1

ϕ(µ− λj)Ψ
(n)
λ (x)Ψ(1)

µ (y).

Moreover, Baxter operator is a sequence of mutations.
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Example: G = PGL4
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Bi-fundamental Baxter operator
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Figure: gl4 × gl2 Toda
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Figure: Exchange sequence.

Mutate column-by-column, reading left to right. In each column
mutate at circled vertices first bottom to top, and then in the rest
top to bottom.
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Bi-fundamental Baxter operator
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Figure: gl4 × gl2 Toda
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Figure: gl2 × gl4 Toda

Result of applying the bi-fundamental Baxter operator.
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Overview

Given a gauge quiver Γ together with an orientation o, we have
a recipe to construct the corresponding cluster quiver QΓ.

We have an injective homomorphism ιo : Aq
Γ −→ Frac

(
Lq
QΓ

)
.

ιo and ιo′ are related by applying sequences of bi-fundamental
Baxter operators.

If Γ does not have loops, we show that ιo lands in Lq
QΓ

by

replacing it with different ιo′ for different generators of Aq
Γ.

Work in progress, joint with Di Francesco, Kedem, Schrader:

One has A
q
Γ −→ Lq

QΓ
, when Γ consists of one node and one loop.

Moreover, the natural GL2(Z)-action on A
q
Γ is realized via cluster

transformations. In particular, Toda Hamiltonians and monopole
operators are mutation equivalent, which settles the case of Γ
having loops.
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Donaldson–Thomas invariants

Each cluster variety has an associated 3-CY category given by the
quiver Q with generic potential. Its DT-invariants can be collected
into a generating function EQ. If there exists a sequence of cluster
mutations µq, which at the end changes all logarithmic labels of
cluster variables to their negatives, one has µq = AdEQ .

For quivers QΓ constructed from gauge quivers Γ without loops,
such a sequence can be obtained by

1 changing orientation of every arrow in Γ;

2 applying certain amount of Dehn twists at every node.

Presumably, EQ counts the BPS states of the corresponding quiver
gauge theory.
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Quantum groups as Coulomb branches

Another example of a quantum K -theoretic Coulomb branch is the
quantum group Uq(sln). The corresponding gauge quiver is as
follows (node with C5 is the framing node: G does not involve
GL5, but additional equivariance is taken with respect to the
maximal torus T ∈ GL(5)).

C C2 C3 C4 C5

The corresponding cluster quiver QΓ is
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Gelfand–Tsetlin subalgebra

The chain of embeddings

gl1 ⊂ gl2 ⊂ · · · ⊂ gln−1 ⊂ gln,

where glk sits in the top-left corner, induces embeddings

Uq(gl1) ⊂ Uq(gl2) ⊂ · · · ⊂ Uq(gln).

Therefore, if Zk is the center of U(glk), then

[Zj ,Zk ] = 0 for all 1 ≤ j , k ≤ n.

The Gelfand–Tsetlin subalgebra GZn ⊂ Uq(gln) is a
commutative subalgebra generated by Z1, . . . ,Zn.

Any finite dimensional irreducible representation of Uq(gln) breaks
up into 1-dimensional weight spaces for GZn, where each weight
space has multiplicity ≤ 1.
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Positive representations of quantum groups

Theorem (Schrader–S.)

Representations of Uq(sln) coming from its cluster structure
coincide with its positive representations studied by Frenkel–Ip
and Ponsot–Teschner.

Positive representations of Uq(sln) are equivalent to its
Gelfand–Tsetlin representations studied by
Gerasimov–Kharchev–Lebedev–Oblezin via applying Whittaker
transform at every node.

Toda Hamiltonians at the k-th node generate the subalgebra
Zk ⊂ Uq(glk), and embedding Uq(glk) ↪→ Uq(gln) is realized
via applying W to Zk .

Corollary

Positive representations of Uq(sln) decompose with multiplicity
one with respect to its Gelfand–Tsetlin subalgebra.
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Thank you!
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