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Overview

Refined topological string on non-compact Calabi-Yau 3-folds is
expected to satisfy the refined holomorphic anomaly equation.
The case of the ordinary/unrefined topological string starts to be
well-understood mathematically.
Our result: first mathematical result going non-trivially in the “refined
direction".
Focus on local P2: total space of the canonical line bundle OP2(−3)
of P2, and the Nekrasov-Shatashvili limit of the refined topological
string.
Purely mathematical result: construction of quasimodular forms from
Betti numbers of moduli spaces of one-dimensional coherent sheaves
on P2.
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Plan
Review: topological string and holomorphic anomaly equation.
Review: refined topological string and refined holomorphic anomaly
equation.
Statement of the main result: mathematical derivation of the refined
holomorphic anomaly equation for local P2 in the
Nekrasov-Shatashvili limit.
Main idea: reformulation of the NS limit of the refined (closed)
topological string as an open topological string on a dual geometry.
Proof of this reformulation: scattering diagram form of the
Kontsevich-Soibelman wall-crossing formula and tropical geometry.
Need to consider the full D4-D2-D0 BPS spectrum.
Derivation of the holomorphic anomaly equation on the open string
side by some degeneration from the (unrefined) closed topological
string on local P2. Corollary: a new formula relating the unrefined
topological string and the NS limit of the refined topological string
(proved for local P2, conjectured to hold at least for all local del
Pezzo surfaces).
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Topological string

Physics overview
Fix X a Calabi-Yau 3-fold.
From coupling of appropriate twists of the two-dimensional
supersymmetric sigma model of target X with two-dimensional
topological gravity, define the A/B models topological string on X .
[Witten, 1988-1990]
Genus g amplitudes are obtained by integration over the moduli space
of genus g Riemann surfaces.
Moduli space M of parameters, complex manifold. For the B-model,
M is the moduli space of complex structures on X . For the A-model,
M is the “stringy complexified Kähler moduli space of X".
Genus g amplitudes of the topological string are functions Fg (t, t) on
M, where t and t are holomorphic and antiholomorphic coordinates
on M.
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Holomorphic anomaly equation

Naive arguments suggest that Fg (t, t) is an holomorphic function on
M (independent of t).
It is not the case: subtelty comes from the fact that the moduli space
of genus g Riemann surfaces is not compact, need to add (stable)
nodal curves to get a compact moduli space. The holomorphic
anomaly equation expresses the fact that the defect of holomorpy
comes entirely from there. Schematically (without details of special
geometry)

∂Fg = 1
2

g−1∑
i=1

(DFi )(DFg−i ) + 1
2D

2Fg−1

where D is a first order differential operator and D2 is a second order
differential operator. [Bershadsky-Cecotti-Ooguri-Vafa, 1993]
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Holomorphic anomaly equation

The holomorphic anomaly equation is a very powerful tool to solve the
topological string: it recursively computes Fg up to ambiguities which
are holomorphic functions onM. These holomorphic ambiguities can
sometimes be fixed simply from their boundary behavior.
The A-model of the quintic 3-fold can be solved for g ≥ 51 using the
holomorphic anomaly equation and known/expected boundary
conditions (large volume leading behavior, orbifold regularity, conifold
gap, Castelnuovo bound). [Huang-Klemm-Quackenbush, 2006]
The A-model of some non-compact Calabi-Yau 3-folds, such as local
P2, is uniquely determined by the holomorphic anomaly equation and
known/expected boundary conditions (large volume leading behavior,
orbifold regularity, conifold gap). [Aganagic- Bouchard-Klemm,
2006][Haghighat-Klemm-Rauch, 2008]
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Topological string: mathematics
Focus on the A-model.

There does not exist yet a general definition mathematical definition
of the “stringy complexified Kähler moduli space". When we know
that X is mirror to Y , it is the moduli space of complex structures on
Y .
In particular, there does not exist yet a general mathematical
definition of the genus g amplitudes Fg (t, t).
What exists mathematically is the power expansion around the large
volume point t = +∞ of the holomorphic limit
Fg (t) := limt→0 Fg (t, t) where t is a linear coordinate on H2(X ,C):
up to known perturbative terms,

Fg (t) =
∑

β∈H2(X ,Z)
Ng ,βe

−
∫

β
t

where Ng ,β is the “number of holomorphic curves in X of genus g
and class β", more precisely Gromov-Witten invariants.
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Topological string: mathematics

The physics prediction of the existence of Fg (t, t) implies that the
mathematically defined series Fg (t) should have non-zero radius of
convergence and analytic continuation to the universal cover ofM,
with quasi-modular-like transformations with respect to the action of
the fundamental group.
The holomorphic anomaly equation for Fg (t, t) translates into an
equation describing Fg (t) up to strictly modular ambiguities.
[Yamaguchi-Yau, 2004][Aganagic-Bouchard-Klemm, 2006]

Pierrick Bousseau Refined holomorphic anomaly 9 / 40



Topological string: mathematics

The physics prediction of the existence of Fg (t, t) implies that the
mathematically defined series Fg (t) should have non-zero radius of
convergence and analytic continuation to the universal cover ofM,
with quasi-modular-like transformations with respect to the action of
the fundamental group.
The holomorphic anomaly equation for Fg (t, t) translates into an
equation describing Fg (t) up to strictly modular ambiguities.
[Yamaguchi-Yau, 2004][Aganagic-Bouchard-Klemm, 2006]

Pierrick Bousseau Refined holomorphic anomaly 9 / 40



Topological string: mathematical results

Theorem (Conjecture of (Aganagic-Bouchard-Klemm, 2006), proofs:
(Fang-Liu-Zong, 2016), (Lho-Pandharipande, 2017), (Coates-Iritani,
2018))
For X = OP2(−3), the generating series Fg (t) of Gromov-Witten
invariants are (after the mirror map change of variables) quasi-modular
forms for the group Γ1(3) and satisfy the holomorphic anomaly equation.

The topological vertex ([Aganagic-Klemm-Marino-Vafa, 2003],
[Li-Liu-Liu-Zhou, 2004]) gives a way to compute A-model/Gromov-Witten
invariants of toric Calabi-Yau 3-folds. However, it is not known how to
deduce quasimodularity and holomorphic anomaly equation from the
topological vertex.
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Topological string from M-theory

The genus g A-model amplitudes of a Calabi-Yau 3-fold compute F -terms
in the low-energy effective action of Type IIA string theory on R1,3 × X .
Using that the strong coupling limit of Type IIA string theory is M-theory,
one obtains a M-theory description of the topological string
[Gopakumar-Vafa, 1998]

∑
g≥0

Fg (t)g2g−2
s = −

∑
β∈H2(X ,Z)

∑
k≥1

1
k
TrHβ

[(−1)2(JL+JR)q2kJL ]
(q k

2 − q− k
2 )2

e−k
∫

β
t

where Hβ is the spaces of BPS states of M2 branes of charge β,
representation of the 5d little group SO(4) ∼ SU(2)L × SU(2)R , and
q = eigs .
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Refined topological string

Let X be a Calabi-Yau 3-fold with a U(1)T symmetry scaling non-trivially
the holomorphic volume form, e.g. X = OP2(−3) with U(1)T rotating the
fibers of the natural projection OP2(−3)→ P2. Define the refined
topological string amplitudes Fg1,g2(t) by∑

g1,g2≥0
Fg1,g2(t)(ε1 + ε2)2g1(−ε1ε2)g2−1

:=
∑

β∈H2(X ,Z)

∑
k≥1

1
k
TrHβ

((−1)2(JL+JR)q2kJL
L q2k(JR+IT )

R )

(q
k
2
1 − q−

k
2

1 )(q
k
2
2 − q−

k
2

2 )
e−k

∫
β

t

where
q1 = eε1 , q2 = eε2 , qL = eεL , qR = eεR ,

εR = ε1 + ε2
2 , εL = ε1 − ε2

2 .

[Nekrasov, 2002][Hollowood-Iqbal-Vafa, 2003]
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Refined topological string

Unrefined limit: ε1 = −ε2 = igs , so
εL = igs , εR = 0, qL = eigs , qR = 1, and so F0,g (t) = Fg (t).
From the M-theory definition, one expects Fg1,g2(t), a priori a formal
power series in Q = e−t , to be convergent and to come from a
globally defined function Fg1,g2(t, t) on the space M of parameters.
No obvious worldsheet definition of Fg1,g2(t, t), so no BCOV
derivation for an holomorphic anomaly equation.
Nevertheless, a refined holomorphic anomaly equation was guessed
[Krefl-Walcher, 2010][Huang-Klemm, 2010]

∂Fg1,g2 = 1
2

g−1∑
0≤j1≤g1
0≤j2≤g2

(j1,j2)6=(0,0)
(j1,j2) 6=(g1,g2)

(DFj1,j2)
(
DF(g1−j1,g2−j2)

)
+ 1

2D
2Fg1,g2−1 .
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globally defined function Fg1,g2(t, t) on the space M of parameters.
No obvious worldsheet definition of Fg1,g2(t, t), so no BCOV
derivation for an holomorphic anomaly equation.
Nevertheless, a refined holomorphic anomaly equation was guessed
[Krefl-Walcher, 2010][Huang-Klemm, 2010]

∂Fg1,g2 = 1
2

g−1∑
0≤j1≤g1
0≤j2≤g2

(j1,j2)6=(0,0)
(j1,j2) 6=(g1,g2)

(DFj1,j2)
(
DF(g1−j1,g2−j2)

)
+ 1

2D
2Fg1,g2−1 .

Pierrick Bousseau Refined holomorphic anomaly 13 / 40



Refined topological string

Unrefined limit: ε1 = −ε2 = igs , so
εL = igs , εR = 0, qL = eigs , qR = 1, and so F0,g (t) = Fg (t).
From the M-theory definition, one expects Fg1,g2(t), a priori a formal
power series in Q = e−t , to be convergent and to come from a
globally defined function Fg1,g2(t, t) on the space M of parameters.
No obvious worldsheet definition of Fg1,g2(t, t), so no BCOV
derivation for an holomorphic anomaly equation.
Nevertheless, a refined holomorphic anomaly equation was guessed
[Krefl-Walcher, 2010][Huang-Klemm, 2010]

∂Fg1,g2 = 1
2

g−1∑
0≤j1≤g1
0≤j2≤g2

(j1,j2)6=(0,0)
(j1,j2) 6=(g1,g2)

(DFj1,j2)
(
DF(g1−j1,g2−j2)

)
+ 1

2D
2Fg1,g2−1 .

Pierrick Bousseau Refined holomorphic anomaly 13 / 40



Refined topological string

Unrefined limit: ε1 = −ε2 = igs , so
εL = igs , εR = 0, qL = eigs , qR = 1, and so F0,g (t) = Fg (t).
From the M-theory definition, one expects Fg1,g2(t), a priori a formal
power series in Q = e−t , to be convergent and to come from a
globally defined function Fg1,g2(t, t) on the space M of parameters.
No obvious worldsheet definition of Fg1,g2(t, t), so no BCOV
derivation for an holomorphic anomaly equation.
Nevertheless, a refined holomorphic anomaly equation was guessed
[Krefl-Walcher, 2010][Huang-Klemm, 2010]

∂Fg1,g2 = 1
2

g−1∑
0≤j1≤g1
0≤j2≤g2

(j1,j2)6=(0,0)
(j1,j2) 6=(g1,g2)

(DFj1,j2)
(
DF(g1−j1,g2−j2)

)
+ 1

2D
2Fg1,g2−1 .

Pierrick Bousseau Refined holomorphic anomaly 13 / 40



Refined topological string

The refined topological string of some non-compact Calabi-Yau
3-folds, such as local P2, is uniquely determined by the refined
holomorphic anomaly equation and known/expected boundary
conditions (large volume leading behavior, orbifold regularity, conifold
gap). [Huang-Klemm, 2010]
Numerical checks against gauge theoretic partition functions
[Nekrasov,2002] and the refined topological vertex
[Iqbal-Kozcaz-Vafa, 2007].
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Refined topological string: mathematics

The spaces of M2-branes Hβ can be defined as cohomology of moduli
spaces of D2− D0 branes, i.e. moduli spaces of coherent sheaves on X
supported on curves, and the SU(2)L × SU(2)R action can be understood
geometrically ([Gopakumar-Vafa, 1998], subtleties coming from the fact
that these moduli spaces are singular [Hosono-Saito-Takahashi,
2001],[Kiem-Li, 2016],[Maulik-Toda, 2016]).
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Refined topological string: mathematics

∑
g1,g2≥0

Fg1,g2(t)(ε1 + ε2)2g1(−ε1ε2)g2−1

:=
∑

β∈H2(X ,Z)

∑
k≥1

1
k
TrHβ

((−1)2(JL+JR)q2kJL
L q2k(JR+IT )

R )

(q
k
2
1 − q−

k
2

1 )(q
k
2
2 − q−

k
2

2 )
e−k

∫
β

t

∂Fg1,g2 = 1
2

g−1∑
0≤j1≤g1
0≤j2≤g2

(j1,j2)6=(0,0)
(j1,j2) 6=(g1,g2)

(DFj1,j2)
(
DF(g1−j1,g2−j2)

)
+ 1

2D
2Fg1,g2−1 .

Main difficulty: the refined holomorphic anomaly equation is a recursion
on (g1, g2), but Fg1,g2(t) is defined through the non-trivial change of
variables q1 = eε1 and q2 = eε2 . Without some geometric/worldsheet-like
interpretation of the parameters (g1, g2), it seems very difficult to prove
anything. It is not known how to deduce quasimodularity and holomophic
anomaly from the refined topological vertex for example.
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The Nekrasov-Shatashvili limit

NS limit: ε1 = ~, ε2 = 0, and so εL = εR = ~
2 .

Denote FNS
g (t) := Fg ,0(t) and y = e~

∑
g≥0

FNS
g (t)~2g−1 =

∑
β∈H2(X ,Z)

∑
k≥1

1
k2

Ωβ(yk)
y k

2 − y− k
2
e−k

∫
β

t

where
Ωβ(y) := TrHβ

((−1)2(JL+JR)yJL+JR+IT ) .

Refined 4d BPS index for D2-D0 branes (JL + JR is the 4d diagonal
SU(2) in the 5d SU(2)L × SU(2)R), (roughly) the Hirzebruch
χy -genus of the moduli space of D2-D0 branes.
Refined holomorphic equation in the NS limit (note: no loop term)

∂FNS
g = 1

2

g−1∑
i=1

(
DFNS

i

) (
DFNS

g−i

)
.
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Main result

Theorem (Conjecture of (Huang-Klemm, 2010), proof: (B-Fan-Guo-Wu,
2020))
For X = OP2(−3), the series FNS

g (t), defined in terms of Betti numbers of
one-dimensional coherent sheaves on P2), are (after the mirror map
change of variables) quasi-modular forms for the group Γ1(3) and satisfy
the NS limit of the refined holomorphic anomaly equation.
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Precise definitions

X = OP2(−3), H2(X ,Z) = H2(P2,Z) = Z

∑
g≥0

FNS
g (t)~2g−1 =

∑
d≥1

∑
k≥1

1
k2

Ωd (yk)
y k

2 − y− k
2
e−kdt

Precise mathematical definition of the Laurent polynomials Ωd (y)?
Moduli space Md ,χ of D2-D0 branes: (coarse) moduli space of
semistable coherent sheaves F on P2 supported on curves of degree d
and with χ(F ) = χ. Very natural in algebraic geometry (Abel-Jacobi
in family)[Simpson, 1990], [Le Potier, 1993].
Define Ωd ,χ(y) as the Poincaré polynomial of Betti numbers of Md ,χ
for the intersection cohomology (physics: think about L2-cohomology
of the stable (smooth) locus. Md ,χ is smooth if gcd(d , χ) = 1,
singular in general.
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Precise definitions

Conjecture
Ωd ,χ only depends on d and not on χ.

We have Md ,χ ' Md ,χ+d (F 7→ F ⊗OP2(1)) and Md ,χ ' Md ,−χ
(F 7→ F∨) but Md ,χ 6= Md ,χ′ if d ≥ 3 and χ 6= ±χ′ mod d .

Theorem (B, 2019)
Ωd ,χ only depends on d and on gcd(d , χ).
The full conjecture is true for d ≤ 4.

Proof using Gromov-Witten theory of a basic result on topology of moduli
space of sheaves.
Without knowing the general conjecture, we define Ωd (y) by average:

Ωd (y) := 1
d

∑
χ mod d

Ωd ,χ(y) .
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Proof strategy

y = e~ ∑
g≥0

FNS
g (t)~2g−1 =

∑
d≥1

∑
k≥1

1
k2

Ωd (yk)
y k

2 − y− k
2
e−kdt

Theorem ( B-Fan-Guo-Wu, 2020)
For X = OP2(−3), the series FNS

g (t), defined in terms of Betti numbers of
one-dimensional coherent sheaves on P2), are (after the mirror map
change of variables) quasi-modular forms for the group Γ1(3) and satisfy
the NS limit of the refined holomorphic anomaly equation.

We would like a genus g worldsheet definition of FNS
g (t). This cannot be

the unrefined topological string on OP2(−3): FNS
g (t) 6= Fg (t) for g ≥ 1.
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Hint

y = e~ ∑
g≥0

FNS
g (t)~2g−1 =

∑
d≥1

∑
k≥1

1
k2

Ωd (yk)
y k

2 − y− k
2
e−kdt

Take the derivative d/dt

∑
g≥0

d
dt F

NS
g ~2g−1 = −

∑
d≥1

∑
k≥1

1
k

dΩd (yk)
y k

2 − y− k
2
e−kdt

The derivative of the NS limit of the refined topological string looks
exactly like an open topological string! [Ooguri-Vafa, 1999]
Main claim: for X = OP2(−3) (and more generally local del Pezzo
sufaces), we can find such open topological string.
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Towards the open string geometry
P2: complex projective plane, complex dimension 2, real dimension 4.
Standard symplectic structure, T 2-Hamiltonian action leading to a
toric description.
Moment map: : P2 → P̄. Over the interior P of P̄, (C∗)2 → P,
Lagrangian T 2-fibration. (C∗)2: complement of a triangle of lines in
P2.
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Towards the opens string geometry: (P2, E )
Replace the triangle of lines by a smooth cubic E (genus one curve)
and (C∗)2 by U := P2 − E . U is a non-compact Calabi-Yau surface.
Over the interior B of B̄, U → B, Lagrangian T 2-fibration with 3
nodal singular fibers. Topological check:
χtop(U) = χtop(P2)− χtop(E ) = 0. In fact, there exists such special
Lagrangian fibration. [Collins,Jacob,Lin, 2019]
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Open topological string: Holomorphic curves in (P2, E )

Study holomorphic curves in U with one boundary on a Lagrangian
T 2-fiber.
In fact U is hyperkähler. Study the open topological string on the
Calabi-Yau 3-fold Z obtained as the C∗-twistor family of U, with
brane T 2

b × R: Nopen
g ,v (b) “counts” of genus g Riemanns surfaces in Z

with one boundary of class v ∈ H1(T 2
b × R,Z) ' Z2.
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Open topological string: Holomorphic curves in (P2, E )
The open invariants Nopen

g ,v (b) jump as a function of b (wall-crossing)
and are difficult to define rigorously (e.g. we are not in a toric
situation).
We provide a mathematically precise definition when b is close to E
and v ∈ H1(T 2

b ,Z) is a multiple of the cycle (1, 0) collapsing on E .
For open curves wrapping a cycle collapsing on E , close them by
gluing a disc: get a closed holomorphic curve in P2 meeting E in one
point. Use relative Gromov-Witten theory to define Nopen

g ,(d ,0) ∈ Q.
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Open string interpretation of FNS

Theorem (B, 2019)∑
g≥0

d
dt F

NS
g ~2g−1 = −1

3
∑
g≥0

∑
d≥1

(−1)d−1Nopen
g ,(d ,0)~

2g−1e−dt

In other words, the refined BPS counts Ωd (y) of (closed) D2-D0 branes on
X = OP2(−3) are equal (up to simple factor) to Ooguri-Vafa open BPS
counts on Z = U × C∗ = (P2 − E )× C∗.
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Open string interpretation of the BPS spectrum of
D4− D2− D0 branes of X = OP2(−3)

Ωd (y) is the refined BPS count of D2-D0 branes on X = OP2(−3) in
the large volume limit. More generally, consider Ωd ,r (y) the refined
BPS count of D4-D2-D0 branes in the large volume limit, where r is
the D4 charge, i.e. the rank of the coherent sheaf on P2.
Assume that we have a definition of Nopen

g ,(d ,r) for open curves wrapping
general cycles (d , r) ∈ H1(T 2

b ,Z), not only the ones of class (d , 0)
which collapse to E .

Almost theorem (for any reasonable mathematical definition of the open
invariants)(B.2019)
The refined BPS counts Ωd ,r (y) of (closed) D4-D2-D0 branes on
X = OP2(−3) are equal (up to simple factor) to Ooguri-Vafa open BPS
counts on Z = U × C∗ = (P2 − E )× C∗ defined by the open invariants
Nopen

g ,(d ,r).
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Open string interpretation of the BPS spectrum of
D4− D2− D0 branes of X = OP2(−3)

Almost Theorem (for any reasonable mathematical definition of the open
invariants)(B.2019)
The refined BPS counts Ωd ,r (y) of (closed) D4-D2-D0 branes on
X = OP2(−3) are equal (up to simple factor) to Ooguri-Vafa open BPS
counts on Z = U × C∗ = (P2 − E )× C∗ defined by the open invariants
Nopen

g ,(d ,r).

It is NOT an example of MNOP-like GW-DT correspondence, but a
new kind of coherent sheaves/open Gromov-Witten correspondence.
A dual description of IIA on X = OP2(−3) is given by a M-theory on
U and a M5-brane wrapped on T 2

b . In IIA on X the BPS spectrum is
given by coherent sheaves on X , whereas in the M-theory description,
the BPS spectrum is given by open M2-branes with boundary on T 2

b .
Then, apply the twistorial description of [Cecotti-Vafa, 2009] to
describe the open M2-branes in terms of the open tolopogical string.
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D4− D2− D0 branes of X = OP2(−3)

Almost Theorem (for any reasonable mathematical definition of the open
invariants)(B.2019)
The refined BPS counts Ωd ,r (y) of (closed) D4-D2-D0 branes on
X = OP2(−3) are equal (up to simple factor) to Ooguri-Vafa open BPS
counts on Z = U × C∗ = (P2 − E )× C∗ defined by the open invariants
Nopen

g ,(d ,r).
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Chain of dualities

Heuristic chain of geometric connections:
Start with open holomorphic curves in U.
U is hyperkähler: do some hyperkähler rotation. In some different
complex structure, get V an elliptic fibration W : V → B. Open
holomorphic curves in U becomes open special Lagrangians.
Suspension construction: S Calabi-Yau 3-fold uv = W , fibration in
affine conics over V , degenerate over T 2. Open special Lagrangians
in V lift to closed special Lagrangians in S.
S is the mirror of local P2! Apply homological mirror symmetry, get
coherent sheaves on X = OP2(−3).
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Chain of dualities

Following the chain of dualities, the base B of the Lagrangian torus
fibration on U becomes moduli space of complex moduli on S and so
should become the stringy Kähler moduli space of X = OP2(−3).
More precisely, B is a 3 : 1 cover over the stringy Kähler moduli space
of X = OP2(−3): the 3 singular torus fibers correspond to the 3 lifts
of the conifold point and the Z/3-orbifold point became smooth.
Even more general correspondence: open invariants Nopen

g ,(r ,d)(b) with
boundary on a general fiber T 2

b should equal counts of BPS state
Ω(d ,r)(y , b) with phase of the central charge equal to π/2 at the
point b of the stringy Kähler moduli space.
Jump of Nopen

g ,(r ,d)(b) and Ω(d ,r)(y , b): wall-crossing phenomenon for
BPS spectrum of the N = 2 4d theories, determined by the
Kontsevich-Soibelman wall-crossing formula.
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Proof
Tropicalize the holomorphic curves in U to graphs on the base B of
the T 2-fibration (g=0: Carl-Pumperla-Siebert, Prince, Gabele, g > 0:
Bousseau), get a scattering diagram computing the Gromov-Witten
invariants Nopen

g ,(d ,r)(b) (“4d spectral network").
Everything algorithmically reconstructed from the three initial discs
emitted by the singularities. Combinatorial/tropical proof of the
Kontsevich-Soibelman wall-crossing formula for the open invariants
(argued physically by [Cecotti-Vafa, 2009] on the basis of the relation
with quantum Chern-Simones theory).
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Scattering diagram
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Proof
Main result (B. 2019): the scattering diagram can be embedded in
the space of Bridgeland stability conditions on the derived category
Db

c Coh(KP2), such that the rays correspond to stability conditions for
which there exists stable objects of phase π/2. Use coordinates on
the stringy Kähler moduli space given by the real part of the central
charges. Similar to attractor flows in supergravity [Denef,2001][Denef,
Moore,2007].
One key technical point: one needs to know that the stringy Kähler
moduli space given by mirror symmetry indeed produces Bridgeland
stability conditions on the derived category [Bayer-Macri, 2009].
Everything algorithmically reconstructed by the Kontsevich-Soibelman
wall-crossing formula (known in the derived category by general
Donaldson-Thomas theory) from the line bundles OP2(n). New
algorithm computing the D4-D2-D0 BPS spectrum of X = OP2(−3)
in the large volume limit.
Need to consider D4 even if only interested in D2-D0: going away
from large volume, D2-D0 decay in D4− D4.
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Remarks

(Prince) Triangles in the scattering diagrams are indexed by Markov
triples (integer solutions of x2 + y2 + z2 = 3xyz). Discs potential
associated to Vianna’s monotone tori can be extracted from the
scattering diagram.
(B.) Viewing the scattering diagrams as living in the space of stability
conditions, the sides of the triangles correspond exactly to triples of
exceptional objects in the derived category of coherent sheaves on P2.
The previous story provides an explanation for the common
appearance of the Markov triples in a priori two distinct topics:

Lagrangians, discs counting, cluster mutations, mirror symmetry for P2

(more precisely P2 − E )
Exceptional objects in the derived category of coherent sheaves on P2.
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Open string interpretation of FNS

I have sketched above the proof of:

Theorem (B, 2019)∑
g≥0

d
dt F

NS
g ~2g−1 = −1

3
∑
g≥0

∑
d≥1

(−1)d−1Nopen
g ,(d ,0)~

2g−1e−dt

In other words, the refined BPS counts Ωd (y) of (closed) D2-D0 branes on
X = OP2(−3) are equal (up to simple factor) to Ooguri-Vafa open BPS
counts on Z = U × C∗ = (P2 − E )× C∗.

To prove the quasimodularity and refined holomorphic equation for FNS
g , it

remains to work on the open topological string side. There is some hope
because the ~-expansion is now the geometric genus expansion of the
topological string.
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Modularity from the Gromov-Witten side (with Fan, Guo,
Wu, 2020)

Degeneration argument. Degeneration of P2 to the normal cone of E .
Line bundle defined by the family of divisors E . General fiber:
X = OP2(−3) = O(−E ). Special fiber: P2 × A1, glued along E × C1

to a non-trivial line bundle over P(NE |P2 ⊕O).
Localization on the bubble P(NE |P2 ⊕O): reduction to equivariant
Gromov-Witten theory of NE |P2 ⊕ N∨E |P2 → E with stationary
descendent insertions.
Use Grothendieck-Riemann-Roch (in Coates-Givental form) to reduce
to Gromov-Witten theory of E with stationary descendent insertions.
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Modularity from the Gromov-Witten side (with Fan, Guo,
Wu, 2020)

Upshot: formula computing open Gromov-Witten invariants Nopen
g ,(d ,0)

of (P2,E ) in terms of Gromov-Witten invariants of X = OP2(−3) and
the elliptic curve E .

Fg = (−1)gFNS
g +

∑
n≥0

∑
g=h+g1+···+gn,
a=(a1,...,an)∈Zn

≥0
(aj ,gj )6=(0,0),

∑n
j=1 aj =2h−2

(−1)h−1FE
h,a

|Aut(a, g)|

n∏
j=1

(−1)gj−1Daj +2FNS
gj .

FE
h,a: Gromov-Witten theory of E with stationary descendent

insertions, known in closed form by [Okounkov-Pandharipande, 2002]
New formula relating the unrefined topological string Fg and the NS
limit FNS

g of the refined topological string (conjecturally valid at least
for all local del Pezzo surfaces).
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Modularity from the Gromov-Witten side (with Fan, Guo,
Wu, 2020)

Use quasimodularity [Okounkov-Pandharipande, 2003] and
holomorphic anomaly equation [Oberdieck-Pixton 2017] for
Gromov-Witten invariants of the elliptic curve
Use quasimodularity and holomorphic anomaly equation for
Gromov-Witten invariants of X = OP2(−3) [Fang-Liu-Zhong, 2016]
[Lho-Pandharipande,2017][Coates-Iritani, 2018].
Slightly miraculous combination of these modularity results gives the
desired result (the SL(2,Z) quasimodularity of the elliptic curve needs
to become Γ1(3) quasimodularity after mirror map).
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Use quasimodularity and holomorphic anomaly equation for
Gromov-Witten invariants of X = OP2(−3) [Fang-Liu-Zhong, 2016]
[Lho-Pandharipande,2017][Coates-Iritani, 2018].
Slightly miraculous combination of these modularity results gives the
desired result (the SL(2,Z) quasimodularity of the elliptic curve needs
to become Γ1(3) quasimodularity after mirror map).
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End

Thank you for your attention!
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