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V:{4D N =2 SCFTs} — {2D chiral CFTs (VOAs)}
s.t.

the Schur index of T = xy(T) := trV(T)(qLO_Cx(V)/24)'

e V is injective in examples so far.

e V(T) is never unitary (reason: cop = —12¢4p). In particular,
V is not surjective.
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Conjecture (Beem-Rastelli '18)
For any 4D N/ =2 SCFT T, we have

Higgs(T) = Xv(7),
where Xy, is the associated variety of a VOA V.
The associated variety is defined as
Xy = Specm Ry,
where Ry = V/CGy(V) is Zhu's G, algebra of V defined as follows:
By the state-field correspondence we can write

V =spanc{:(0™ai(z))...(0"ar(2)): }.

(V) is the subspace of V spanned by the elements of the above
form with ny +---+n, > 1. 3
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= Ry = V//(G(V) is a Poisson algebra by

f(z)-g(z) = :f(2)8(2)¢,

{f(2),g(2)} = Resw=-f(w)g(z).

Remark

The Higgs branch Higgs(7) is a hyperkahler cone, while the associ-
ated variety Xy, of a VOA V is only a Poisson variety in general.
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g = g[t,t7!] ® CK affine Kac-Moody algebra associated with g

V¥ (g) = U(8) ®uy(g[rjeck) Ck the universal affine vertex algebra
associated with g at level k € C.

Vk(g) is generated by x(z) (x € g) with OPEs
x(2)y(w) ~ [x, yl(w)/(z = w) + k(x|y)/(z = w)?.
(a V¥(g)-module = a smooth g-module of level k)

We have
Xviig) =0

Ly(g) the simple quotient of V¥(g)

XLk(g) C g*, G-invariant and conic.
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Example of VOA coming from 4D N =2 SCFT

e Li(g) is integrable (k € Z>0) = X, (q) = {0} (a fat point).
In fact, the converse is true.

e In general, a VOA V is called lisse (or Co-cofinite) if
dim Xy, = 0. A lisse VOA has very nice properties such as
finiteness of simple modules, the modularity of characters, and
the existence of the vertex tensor categories ([Yongchang Zhu,
Gaberdiel-Neitzke, Miyamoto, Yi-Zhi Huang] )

e L(g) is admissible = X;, ;) = Oy, 3 nilpotent orbit Oy C g*
([A'15]).

Xie-Yan-Yau’l6, Song-Xie-Yan’17
Lk (g) appears as V(T) for some Argyres-Douglas theory T if k is

boundary admissible.
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Quasi-lisse VOAs

Definition (A.-Kawasetsu’18)
A VOA V is called quasi-lisse if X\ has finitely many symplectic

leaves.
V(T) is expected to be quasi-lisse.

Remark

e Li(g) is quasi-lisse <= X, (g C N, the nilpotent cone of g.

e In particular, an admissible affine vertex algebras Ly(g) is

quasi-lisse.
o letge DES: Ay C A C G C Dy C Fy C Es C E; C Eg and

k =—h"/6—1. Then X, (5) = Oy, the minimal nilpotent
orbit closure in g and so Lk(g) is quasi-lisse ([A.-Moreau'16]).
These are VOASs that appeared in [BLZPRVR] as examples of

V(T). 7
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Modularity of Schur index

Theorem (A.-Kawasetsu’18)
Let V be a quasi-lisse VOA.

1) There exists only finitely many simple ordinary representations
of V;

2) For an ordinary representation M, trp(g-0~x)/?%) converges
to a holomorphic function on the upper half place. Moreover,
{trm(gro=m/24) | M ordinary } is a subspace of the space of
the solutions of a modular linear differential equation (MLDE).

Together with Beem-Rastelli conjecture, the above theorem implies
the modularity of the Schur index of a 4D N =2 SCFT.
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The theory of class S ([Gaiotto'12])

> a punctured Riemann surface,
Se(X) | _ .
G: complex semisimple group

e Moore-Tachikawa'l2 gave a mathematical description of the
Higgs branch of Sg(X) in terms of 2D TQFT, up to a
conjecture.

e This Moore-Tachikawa conjecture was proved by
Braverman-Finkelberg-Nakajima'19.

According to Moore-Tachikawa, it is sufficient to describe
Higgs(S¢ (X)) for genus zero X.
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Relation to Coulomb branches

We get:

MT, = Higgs(Sg (P! with r puctures)).

For type A, Moore-Tachikawa variety MT, is isomorphic to the
Coulomb branch of the 3D gauge theory associated with the star
shaped quiver with r-legs ([BFN]).

= MT, has a finitely many symplectic leaves ([Weekes]).
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e G~g=g[t,t ] @ CK (g = Lie(G));

e symplectic variety X ~» a VOA V such that Xy = X;

e moment map p : X — g* ~» homomorphism V*(g) — V such
that the induced morphism Xy — Xy«(4) = g* coincides with
1;

o (X X V)JJJA(G) ~ H*/2**(G,3, V1 ® Vp)
(Xpgoor2t0 (5.6, v10v5) = (Xvy X Xv,)///A(G) in “nice” cases.)

The level of V4 ® Vo must be —2hY, ie., k = —h".
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Beem-Peelaers-Rastelli-van Rees Conjecture

o MTy = T*G ~ DZ_,., (global) cdo on G
[Mallkov-Schechtman Vaintrob, Beilinson-Drinfeld] at the
critical level k = —hY (chh ~ T*G);

e MT; = G x S is obtained from MT, = T*G by Kostant
reduction X — X xg= S.

MTy ~ HgS(Dg:_hv)
(Xngy(pg )= T*6 Xg S= G xS)
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{V, | r > 1} such that

1) 3 a vertex algebra homomorphism V=" (g)®" — V, and the
g[t]®"-action on V, integrates to the action of
r

A

G[[t]] x --- x G[[t]];
2) Vo =Dg_yv and V1 = H35(DZ _;.);
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Chiral algebras of class S

Theorem (Continued)

Moreover,

a) each V, is simple and conformal with central charge
dim(MT,) — 24(r — 2)(plp") =
rdimg — (r —2)rkg — 24(r — 2)(plp");

b) Forzi...z, € T, try,(gtz . 2z,) =

I -y T2, i
e (H ea, (1- cll“ﬁa ) [Ti-itrvi(a~Pz), where
Vi = U(8) ®u(glgeck) Ex is the Weyl module at the critical

level:

C) X\/r = MTr.

ii5)
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Beem-Rastelli conjecture for class S theory

According to [BPRVR] , Theorem (1)-(3) and (a)-(b) are the
properties that V(Sg(P* with r punctures)) should have

= V, = V(S (P! with r punctures)).

Moreover, by Theorem (c), we conclude that Beem-Rastelli
conjecture is true for the class S theory.
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We can in principle compute the chiral algebras of class S.
G = SL;
MT; =C?°®C*®C? C?>~ Sl

V3 = 7 system associated to the symplectic vector space (C?)®3
(affinization of the Weyl algebra).

MT4 = @min in D4
oy

V4 = L_5(Da), the simple affine vertex algebra associated with D;
at level —2 (conjectured by [BL?PRVR]). 17
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Examples (contined)

The isomorphism X, _,(p,) = Omin reproves a result in
[A.-Moreau'16].

The associativities imply:

o ((C*)®3 x (C?*)¥3)/A(SL2) = Opmin,
(ADHM construction of Qpin)

o H®/2¥i(sly, 5o, By((C?)%) ® By((C?)®*) = 6oL —2(Ds)

Also, the MLDE method gives

Lo—c/24) _ EA{(T)
240n(T)0

trL—2(D4) (q

([A.-Kawasetsul]).
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Examples (continued)

G =513

MT3 == ©min in E6.

]
el

Vs = L_3(E).

In general, neither MT, nor V, has a simple description.
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Some words on the proof

Vo =D, should satisfy
H®/2+i(G, g, D _jv V) 2V,
Why?
By definition,
,DCGh,—hV -Mod = DG((t)) —MOd_hv
([Arkhipov-Gaitsgory]). Hence,
Dg_ v -Mod®lt = D, - -Mod_pv,

where Df;h_hv itself corresponds to the d-function D-module d at
the identity.
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Some words on the proof

By restricting this equivalence, we get
DL, -ModClIx 6l & pe  Mod Il =~ Rep(6).

Via this equivalence the monodical structure of
D ~ModClEN<CIIH] s given by

M@ N H®/?*(g,,M © N)
([Frenkel-Gaitsgory]). Because Dg”,_hv < 0e & C,
HOO/2+.(g g’ h\/ ® M) g M,

and one can check this isomorphism holds for any g-module M at
the critical level on which the g[t]-action integrates to the action
of G[[t]] (JArkhipov-Gaitsgory]).
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Proposition
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=V, 1= Hgs(v,).

22
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Some words on the proof

Vi, = HgS(Dg’:_hv) should satisfy
H>/2Hi(G, g, V1 @ V) = 6oV, _1.
Proposition
H>/2+i(g, g, V1 ® M) 22 §; 0 HOs(M).
= V1 = HOs(V,).

So it is enough to construct an inverse functor to H3¢(?).

Equivalently, we want to recover everything from V7.
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Construction of V,

Example:

V, = D%h has two commuting action of g at the critical level
V1 has one action of g at the critical level

Easy guess: Vo =V ® V17

No, because the action of the two Feigin-Frenlel center on

V, = D%h,hv is the same.

We can kill the difference of the two action of the center on
V1 ® V1, or more generally, on V‘?r, using a certain BRST
cohomology.
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Construction of V,

3(9): Feigin-Frenkel center of g at the critical level generated by
pl(Z), 200 prk(g)(z)'

r k lr=
V, = Hapsr (VY © (®,r':(f)(bia c)® 1, Q)

where
r—1
Q(z) =D Qiisa(2),
i=1

rk(g)

Quiv1(2) = Y (milpi(2)) — mis1(pi(2)))e ) (2).

j=1
One can check that the above defined V, satisfies the required
properties. 1.
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Thank you!
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