4D/2D duality and representation theory

Informal Berkeley String Math meetings

Tomoyuki Arakawa

October 4, 2020

RIMS, Kyoto University

4D/2D Correspondence

Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees '15 ([BL²PRvR]):

 $\mathbb{V}: \{ 4D \ \mathcal{N} = 2 \ SCFTs \} \longrightarrow \{ 2D \ chiral \ CFTs \ (VOAs) \}$

 $\mathbb{V}: \{ 4D \ \mathcal{N} = 2 \ SCFTs \} \longrightarrow \{ 2D \ chiral \ CFTs \ (VOAs) \}$

the Schur index of
$$\mathcal{T} = \chi_{\mathbb{V}}(\mathcal{T}) := \operatorname{tr}_{\mathbb{V}(\mathcal{T})}(q^{L_0 - c_{\chi(V)}/24}).$$

 $\mathbb{V}: \{ 4D \ \mathcal{N} = 2 \ SCFTs \} \longrightarrow \{ 2D \ chiral \ CFTs \ (VOAs) \}$

s.t.

the Schur index of
$$\mathcal{T} = \chi_{\mathbb{V}}(\mathcal{T}) := \operatorname{tr}_{\mathbb{V}(\mathcal{T})}(q^{L_0 - c_{\chi(V)}/24}).$$

• V is injective in examples so far.

 $\mathbb{V}: \{ 4D \ \mathcal{N} = 2 \ SCFTs \} \longrightarrow \{ 2D \ chiral \ CFTs \ (VOAs) \}$

the Schur index of
$$\mathcal{T} = \chi_{\mathbb{V}}(\mathcal{T}) := \operatorname{tr}_{\mathbb{V}(\mathcal{T})}(q^{L_0 - c_{\chi(V)}/24}).$$

- \mathbb{V} is injective in examples so far.
- $\mathbb{V}(\mathcal{T})$ is never unitary

 $\mathbb{V}: \{ 4D \ \mathcal{N} = 2 \ SCFTs \} \longrightarrow \{ 2D \ chiral \ CFTs \ (VOAs) \}$

the Schur index of
$$\mathcal{T} = \chi_{\mathbb{V}}(\mathcal{T}) := \operatorname{tr}_{\mathbb{V}(\mathcal{T})}(q^{L_0 - c_{\chi(V)}/24}).$$

- \mathbb{V} is injective in examples so far.
- $\mathbb{V}(\mathcal{T})$ is never unitary (reason: $c_{2D} = -12c_{4D}$).

 $\mathbb{V}: \{ 4D \ \mathcal{N} = 2 \ SCFTs \} \longrightarrow \{ 2D \ chiral \ CFTs \ (VOAs) \}$

the Schur index of
$$\mathcal{T} = \chi_{\mathbb{V}}(\mathcal{T}) := \operatorname{tr}_{\mathbb{V}(\mathcal{T})}(q^{L_0 - c_{\chi(V)}/24}).$$

- V is injective in examples so far.
- $\mathbb{V}(\mathcal{T})$ is never unitary (reason: $c_{2D} = -12c_{4D}$). In particular, \mathbb{V} is not surjective.

Conjecture (Beem-Rastelli '18)

Conjecture (Beem-Rastelli '18)

```
For any 4D \mathcal{N}=2 SCFT \mathcal{T} ,
```

```
Conjecture (Beem-Rastelli '18)
```

```
For any 4D \mathcal{N} = 2 SCFT \mathcal{T}, we have
```

```
\mathsf{Higgs}(\mathcal{T}) \cong X_{\mathbb{V}(\mathcal{T})},
```

where X_V is the associated variety of a VOA V.

Conjecture (Beem-Rastelli '18) For any 4D $\mathcal{N} = 2$ SCFT \mathcal{T} , we have

 $\mathsf{Higgs}(\mathcal{T}) \cong X_{\mathbb{V}(\mathcal{T})},$

where X_V is the associated variety of a VOA V.

The associated variety is defined as

 $X_V = \operatorname{Specm} R_V$,

where $R_V = V/C_2(V)$ is Zhu's C_2 algebra of V defined as follows:

Conjecture (Beem-Rastelli '18) For any 4D $\mathcal{N} = 2$ SCFT \mathcal{T} , we have

 $\mathsf{Higgs}(\mathcal{T}) \cong X_{\mathbb{V}(\mathcal{T})},$

where X_V is the associated variety of a VOA V.

The associated variety is defined as

 $X_V = \operatorname{Specm} R_V$,

where $R_V = V/C_2(V)$ is Zhu's C_2 algebra of V defined as follows:

By the state-field correspondence we can write

$$V = \operatorname{span}_{\mathbb{C}} \{ {}^{\circ}_{\circ} (\partial^{n_1} a_1(z)) \dots (\partial^{n_r} a_r(z)) {}^{\circ}_{\circ} \}.$$

Conjecture (Beem-Rastelli '18) For any 4D $\mathcal{N} = 2$ SCFT \mathcal{T} , we have

 $\mathsf{Higgs}(\mathcal{T}) \cong X_{\mathbb{V}(\mathcal{T})},$

where X_V is the associated variety of a VOA V.

The associated variety is defined as

 $X_V = \operatorname{Specm} R_V$,

where $R_V = V/C_2(V)$ is Zhu's C_2 algebra of V defined as follows:

By the state-field correspondence we can write

$$V = \operatorname{span}_{\mathbb{C}} \{ {}_{\circ}^{\circ} (\partial^{n_1} a_1(z)) \dots (\partial^{n_r} a_r(z)) {}_{\circ}^{\circ} \}.$$

 $C_2(V)$ is the subspace of V spanned by the elements of the above form with $n_1 + \cdots + n_r \ge 1$.

$$\Rightarrow R_V = V/C_2(V)$$

$$\overline{f(z)}.\overline{g(z)} = \overline{{}_{\circ}^{\circ} f(z)g(z)}_{\circ}^{\circ},$$

$$\overline{f(z)}.\overline{g(z)} = \overline{{}_{\circ}^{\circ} f(z)g(z)}_{\circ}^{\circ},$$

$$\{\overline{f(z)},\overline{g(z)}\}=\overline{\operatorname{Res}_{w=z}f(w)g(z)}$$

$$\overline{f(z)}.\overline{g(z)} = \overline{{}_{\circ}^{\circ} f(z)g(z)}_{\circ}^{\circ},$$

$$\{\overline{f(z)},\overline{g(z)}\}=\overline{\operatorname{Res}_{w=z}f(w)g(z)}.$$

Remark

The Higgs branch Higgs(\mathcal{T}) is a hyperkähler cone,

$$\overline{f(z)}.\overline{g(z)} = \overline{{}_{\circ}^{\circ} f(z)g(z)}_{\circ}^{\circ},$$

$$\{\overline{f(z)},\overline{g(z)}\}=\overline{\operatorname{Res}_{w=z}f(w)g(z)}.$$

Remark

The Higgs branch Higgs(\mathcal{T}) is a hyperkähler cone, while the associated variety X_V of a VOA V is only a Poisson variety in general.

Examples of associated varieties

 $\widehat{\mathfrak{g}} = \mathfrak{g}[t,t^{-1}] \oplus \mathbb{C}K$ affine Kac-Moody algebra associated with \mathfrak{g}

 $V^k(\mathfrak{g})$ is generated by x(z) $(x \in \mathfrak{g})$ with OPEs $x(z)y(w) \sim [x,y](w)/(z-w) + k(x|y)/(z-w)^2.$

(a $V^k(\mathfrak{g})$ -module = a smooth $\widehat{\mathfrak{g}}$ -module of level k)

 $V^k(\mathfrak{g})$ is generated by x(z) $(x \in \mathfrak{g})$ with OPEs $x(z)y(w) \sim [x, y](w)/(z - w) + k(x|y)/(z - w)^2.$

(a $V^k(\mathfrak{g})$ -module = a smooth $\widehat{\mathfrak{g}}$ -module of level k) We have

$$X_{V^k(\mathfrak{g})} = \mathfrak{g}^*.$$

 $V^k(\mathfrak{g})$ is generated by x(z) $(x \in \mathfrak{g})$ with OPEs $x(z)y(w) \sim [x, y](w)/(z - w) + k(x|y)/(z - w)^2.$

(a $V^k(\mathfrak{g})$ -module = a smooth $\widehat{\mathfrak{g}}$ -module of level k) We have

$$X_{V^k(\mathfrak{g})} = \mathfrak{g}^*.$$

 $L_k(\mathfrak{g})$ the simple quotient of $V^k(\mathfrak{g})$

 $V^k(\mathfrak{g})$ is generated by x(z) $(x \in \mathfrak{g})$ with OPEs $x(z)y(w) \sim [x, y](w)/(z - w) + k(x|y)/(z - w)^2.$

(a $V^k(\mathfrak{g})$ -module = a smooth $\widehat{\mathfrak{g}}$ -module of level k) We have

$$X_{V^k(\mathfrak{g})}=\mathfrak{g}^*.$$

 $L_k(\mathfrak{g})$ the simple quotient of $V^k(\mathfrak{g})$

 $X_{L_k(\mathfrak{g})} \subset \mathfrak{g}^*, \quad G ext{-invariant and conic.}$

• $L_k(\mathfrak{g})$ is integrable $(k \in \mathbb{Z}_{\geq 0}) \Rightarrow X_{L_k(\mathfrak{g})} = \{0\}$ (a fat point).

 L_k(g) is integrable (k ∈ Z≥0) ⇒ X_{L_k(g)} = {0} (a fat point). In fact, the converse is true.

- L_k(g) is integrable (k ∈ Z≥0) ⇒ X_{L_k(g)} = {0} (a fat point). In fact, the converse is true.
- In general, a VOA V is called *lisse* (or C₂-cofinite) if dim X_V = 0.

- L_k(g) is integrable (k ∈ Z≥0) ⇒ X_{L_k(g)} = {0} (a fat point). In fact, the converse is true.
- In general, a VOA V is called *lisse* (or C₂-cofinite) if dim X_V = 0. A lisse VOA has very nice properties such as finiteness of simple modules, the modularity of characters, and the existence of the vertex tensor categories ([Yongchang Zhu, Gaberdiel-Neitzke, Miyamoto, Yi-Zhi Huang])

- L_k(g) is integrable (k ∈ Z≥0) ⇒ X_{L_k(g)} = {0} (a fat point). In fact, the converse is true.
- In general, a VOA V is called *lisse* (or C_2 -cofinite) if dim $X_V = 0$. A lisse VOA has very nice properties such as finiteness of simple modules, the modularity of characters, and the existence of the vertex tensor categories ([Yongchang Zhu, Gaberdiel-Neitzke, Miyamoto, Yi-Zhi Huang])
- $L_k(\mathfrak{g})$ is admissible

- L_k(g) is integrable (k ∈ Z≥0) ⇒ X_{L_k(g)} = {0} (a fat point). In fact, the converse is true.
- In general, a VOA V is called *lisse* (or C₂-cofinite) if dim X_V = 0. A lisse VOA has very nice properties such as finiteness of simple modules, the modularity of characters, and the existence of the vertex tensor categories ([Yongchang Zhu, Gaberdiel-Neitzke, Miyamoto, Yi-Zhi Huang])
- *L_k(g)* is admissible ⇒ *X_{L_k(g)}* = [¬] □_{*k*}, ∃ nilpotent orbit □_{*k*} ⊂ g^{*} ([A'15]).

- L_k(g) is integrable (k ∈ Z≥0) ⇒ X_{L_k(g)} = {0} (a fat point). In fact, the converse is true.
- In general, a VOA V is called *lisse* (or C₂-cofinite) if dim X_V = 0. A lisse VOA has very nice properties such as finiteness of simple modules, the modularity of characters, and the existence of the vertex tensor categories ([Yongchang Zhu, Gaberdiel-Neitzke, Miyamoto, Yi-Zhi Huang])
- *L_k*(g) is admissible ⇒ *X_{L_k(g)}* = [¬] □_{*k*}, ∃ nilpotent orbit □_{*k*} ⊂ g^{*} ([A'15]).

Xie-Yan-Yau'16, Song-Xie-Yan'17

 $L_k(\mathfrak{g})$ appears as $\mathbb{V}(\mathcal{T})$ for some Argyres-Douglas theory \mathcal{T} if k is boundary admissible.

Definition (A.-Kawasetsu'18)

A VOA V is called *quasi-lisse* if X_V has finitely many symplectic leaves.

Definition (A.-Kawasetsu'18)

A VOA V is called *quasi-lisse* if X_V has finitely many symplectic leaves.

 $\mathbb{V}(\mathcal{T})$ is expected to be quasi-lisse.

Definition (A.-Kawasetsu'18)

A VOA V is called *quasi-lisse* if X_V has finitely many symplectic leaves.

 $\mathbb{V}(\mathcal{T})$ is expected to be quasi-lisse.

Remark

• $L_k(\mathfrak{g})$ is quasi-lisse $\iff X_{L_k(\mathfrak{g})} \subset \mathcal{N}$, the nilpotent cone of \mathfrak{g} .

Definition (A.-Kawasetsu'18)

A VOA V is called *quasi-lisse* if X_V has finitely many symplectic leaves.

 $\mathbb{V}(\mathcal{T})$ is expected to be quasi-lisse.

Remark

- $L_k(\mathfrak{g})$ is quasi-lisse $\iff X_{L_k(\mathfrak{g})} \subset \mathcal{N}$, the nilpotent cone of \mathfrak{g} .
- In particular, an admissible affine vertex algebras L_k(g) is quasi-lisse.
Quasi-lisse VOAs

Definition (A.-Kawasetsu'18)

A VOA V is called *quasi-lisse* if X_V has finitely many symplectic leaves.

 $\mathbb{V}(\mathcal{T})$ is expected to be quasi-lisse.

Remark

- $L_k(\mathfrak{g})$ is quasi-lisse $\iff X_{L_k(\mathfrak{g})} \subset \mathcal{N}$, the nilpotent cone of \mathfrak{g} .
- In particular, an admissible affine vertex algebras L_k(g) is quasi-lisse.
- Let $\mathfrak{g} \in \mathsf{DES}$: $A_1 \subset A_2 \subset G_2 \subset D_4 \subset F_4 \subset E_6 \subset E_7 \subset E_8$ and $k = -h^{\vee}/6 1$.

Quasi-lisse VOAs

Definition (A.-Kawasetsu'18)

A VOA V is called *quasi-lisse* if X_V has finitely many symplectic leaves.

 $\mathbb{V}(\mathcal{T})$ is expected to be quasi-lisse.

Remark

- $L_k(\mathfrak{g})$ is quasi-lisse $\iff X_{L_k(\mathfrak{g})} \subset \mathcal{N}$, the nilpotent cone of \mathfrak{g} .
- In particular, an admissible affine vertex algebras L_k(g) is quasi-lisse.
- Let g ∈ DES: A₁ ⊂ A₂ ⊂ G₂ ⊂ D₄ ⊂ F₄ ⊂ E₆ ⊂ E₇ ⊂ E₈ and k = -h[∨]/6 − 1. Then X_{L_k(g)} = m_{in} the minimal nilpotent orbit closure in g and so L_k(g) is quasi-lisse ([A.-Moreau'16]).

Quasi-lisse VOAs

Definition (A.-Kawasetsu'18)

A VOA V is called *quasi-lisse* if X_V has finitely many symplectic leaves.

 $\mathbb{V}(\mathcal{T})$ is expected to be quasi-lisse.

Remark

- $L_k(\mathfrak{g})$ is quasi-lisse $\iff X_{L_k(\mathfrak{g})} \subset \mathcal{N}$, the nilpotent cone of \mathfrak{g} .
- In particular, an admissible affine vertex algebras L_k(g) is quasi-lisse.
- Let g ∈ DES: A₁ ⊂ A₂ ⊂ G₂ ⊂ D₄ ⊂ F₄ ⊂ E₆ ⊂ E₇ ⊂ E₈ and k = -h[∨]/6 − 1. Then X_{L_k(g)} = m_{in} the minimal nilpotent orbit closure in g and so L_k(g) is quasi-lisse ([A.-Moreau'16]). These are VOAs that appeared in [BL²PRvR] as examples of V(T).

Modularity of Schur index

Theorem (A.-Kawasetsu'18)

Let V be a quasi-lisse VOA.

Let V be a quasi-lisse VOA.

 There exists only finitely many simple ordinary representations of V;

Let V be a quasi-lisse VOA.

- There exists only finitely many simple ordinary representations of V;
- 2) For an ordinary representation M, $tr_M(q^{L_0-c_{\chi(V)}/24})$ converges to a holomorphic function on the upper half place.

Let V be a quasi-lisse VOA.

- There exists only finitely many simple ordinary representations of V;
- 2) For an ordinary representation M, $tr_M(q^{L_0-c_{\chi(V)}/24})$ converges to a holomorphic function on the upper half place. Moreover, $\{tr_M(q^{L_0-c_{\chi(V)}/24}) \mid M \text{ ordinary }\}$ is a subspace of the space of the solutions of a modular linear differential equation (MLDE).

Let V be a quasi-lisse VOA.

- There exists only finitely many simple ordinary representations of V;
- 2) For an ordinary representation M, $tr_M(q^{L_0-c_{\chi(V)}/24})$ converges to a holomorphic function on the upper half place. Moreover, $\{tr_M(q^{L_0-c_{\chi(V)}/24}) \mid M \text{ ordinary }\}$ is a subspace of the space of the solutions of a modular linear differential equation (MLDE).

Together with Beem-Rastelli conjecture,

Let V be a quasi-lisse VOA.

- There exists only finitely many simple ordinary representations of V;
- 2) For an ordinary representation M, $tr_M(q^{L_0-c_{\chi(V)}/24})$ converges to a holomorphic function on the upper half place. Moreover, $\{tr_M(q^{L_0-c_{\chi(V)}/24}) \mid M \text{ ordinary }\}$ is a subspace of the space of the solutions of a modular linear differential equation (MLDE).

Together with Beem-Rastelli conjecture, the above theorem implies the modularity of the Schur index of a 4D $\mathcal{N} = 2$ SCFT.

Beem-Rastelli Conjecture for Class ${\cal S}$ theory

Beem-Rastelli Conjecture for Class \mathcal{S} theory

$$\begin{cases} S_G(\Sigma) \mid \Sigma : \text{ a punctured Riemann surface,} \end{cases}$$

$$\begin{cases} S_G(\Sigma) \mid & \Sigma: \text{ a punctured Riemann surface,} \\ G: \text{ complex semisimple group} \end{cases}$$

$$\begin{cases} S_G(\Sigma) \mid & \Sigma: \text{ a punctured Riemann surface,} \\ G: \text{ complex semisimple group} \end{cases}$$

• Moore-Tachikawa'12 gave a mathematical description of the Higgs branch of $S_G(\Sigma)$ in terms of 2D TQFT,

$$\begin{cases} S_G(\Sigma) \mid & \Sigma: \text{ a punctured Riemann surface,} \\ G: \text{ complex semisimple group} \end{cases}$$

 Moore-Tachikawa'12 gave a mathematical description of the Higgs branch of S_G(Σ) in terms of 2D TQFT, up to a conjecture.

$$\begin{cases} S_G(\Sigma) \mid & \Sigma: \text{ a punctured Riemann surface,} \\ G: \text{ complex semisimple group} \end{cases}$$

- Moore-Tachikawa'12 gave a mathematical description of the Higgs branch of S_G(Σ) in terms of 2D TQFT, up to a conjecture.
- This Moore-Tachikawa conjecture was proved by Braverman-Finkelberg-Nakajima'19.

The theory of class \mathcal{S} ([Gaiotto'12])

 $\left\{ S_G(\Sigma) \mid \begin{array}{c} \Sigma: \text{ a punctured Riemann surface,} \\ G: \text{ complex semisimple group} \end{array} \right\}$

- Moore-Tachikawa'12 gave a mathematical description of the Higgs branch of $S_G(\Sigma)$ in terms of 2D TQFT, up to a conjecture.
- This Moore-Tachikawa conjecture was proved by Braverman-Finkelberg-Nakajima'19.

According to Moore-Tachikawa, it is sufficient to describe $Higgs(S_G(\Sigma))$ for genus zero Σ .

For $r \geq 1$, define MT_r

For $r \geq 1$, define $MT_r := \operatorname{Spec} \left(H^*_{\check{G}[[t]]}(\operatorname{Gr}_{\check{G}}, i^!_{\Delta}(\mathcal{A}_R^{\boxtimes r})) \right)$, where \check{G} is the Langlands dual of G, $\operatorname{Gr}_{\check{G}} = \check{G}((t))/\check{G}[[t]]$, $i_{\Delta} : \operatorname{Gr}_{\check{G}} \to \operatorname{Gr}_{\check{G}} \times \cdots \times \operatorname{Gr}_{\check{G}}$ is the diagonal embedding, and \mathcal{A}_R is the perverse sheaf corresponding to the regular representation of \check{G} via the geometric Satake correspondence.

For $r \geq 1$, define $MT_r := \operatorname{Spec} \left(H^*_{\check{G}[[t]]}(\operatorname{Gr}_{\check{G}}, i^!_{\Delta}(\mathcal{A}_R^{\boxtimes r})) \right)$, where \check{G} is the Langlands dual of G, $\operatorname{Gr}_{\check{G}} = \check{G}((t))/\check{G}[[t]]$, $i_{\Delta} : \operatorname{Gr}_{\check{G}} \to \operatorname{Gr}_{\check{G}} \times \cdots \times \operatorname{Gr}_{\check{G}}$ is the diagonal embedding, and \mathcal{A}_R is the perverse sheaf corresponding to the regular representation of \check{G} via the geometric Satake correspondence. Then

 MT_r is a (possibly singular) symplectic variety equipped with a Hamiltonian action of Ğ^r;

For $r \geq 1$, define $MT_r := \operatorname{Spec} \left(H^*_{\check{G}[[t]]}(\operatorname{Gr}_{\check{G}}, i^!_{\Delta}(\mathcal{A}_R^{\boxtimes r})) \right)$, where \check{G} is the Langlands dual of G, $\operatorname{Gr}_{\check{G}} = \check{G}((t))/\check{G}[[t]]$, $i_{\Delta} : \operatorname{Gr}_{\check{G}} \to \underbrace{\operatorname{Gr}_{\check{G}} \times \cdots \times \operatorname{Gr}_{\check{G}}}_{r}$ is the diagonal embedding, and \mathcal{A}_R is the perverse sheaf corresponding to the regular representation of \check{G} via the geometric Satake correspondence. Then

- MT_r is a (possibly singular) symplectic variety equipped with a Hamiltonian action of Ğ^r;
- 2) MT₂

For $r \geq 1$, define $MT_r := \operatorname{Spec} \left(H^*_{\check{G}[[t]]}(\operatorname{Gr}_{\check{G}}, i^!_{\Delta}(\mathcal{A}_R^{\boxtimes r})) \right)$, where \check{G} is the Langlands dual of G, $\operatorname{Gr}_{\check{G}} = \check{G}((t))/\check{G}[[t]]$, $i_{\Delta} : \operatorname{Gr}_{\check{G}} \to \operatorname{Gr}_{\check{G}} \times \cdots \times \operatorname{Gr}_{\check{G}}$ is the diagonal embedding, and \mathcal{A}_R is the perverse sheaf corresponding to the regular representation of \check{G} via the geometric Satake correspondence. Then

- MT_r is a (possibly singular) symplectic variety equipped with a Hamiltonian action of Ğ^r;
- 2) $MT_2 = T^*G$,

For $r \geq 1$, define $MT_r := \operatorname{Spec} \left(H^*_{\check{G}[[t]]}(\operatorname{Gr}_{\check{G}}, i^!_{\Delta}(\mathcal{A}_R^{\boxtimes r})) \right)$, where \check{G} is the Langlands dual of G, $\operatorname{Gr}_{\check{G}} = \check{G}((t))/\check{G}[[t]]$, $i_{\Delta} : \operatorname{Gr}_{\check{G}} \to \operatorname{Gr}_{\check{G}} \times \cdots \times \operatorname{Gr}_{\check{G}}$ is the diagonal embedding, and \mathcal{A}_R is the perverse sheaf corresponding to the regular representation of \check{G} via the geometric Satake correspondence. Then

- MT_r is a (possibly singular) symplectic variety equipped with a Hamiltonian action of Ğ^r;
- 2) $MT_2 = T^*G$, $MT_1 = G \times S$, where $S \subset \mathfrak{g}^*$ is the Kostant-Slodowy slice ;

For $r \geq 1$, define $MT_r := \operatorname{Spec} \left(H^*_{\check{G}[[t]]}(\operatorname{Gr}_{\check{G}}, i^!_{\Delta}(\mathcal{A}_R^{\boxtimes r})) \right)$, where \check{G} is the Langlands dual of G, $\operatorname{Gr}_{\check{G}} = \check{G}((t))/\check{G}[[t]]$, $i_{\Delta} : \operatorname{Gr}_{\check{G}} \to \operatorname{Gr}_{\check{G}} \times \cdots \times \operatorname{Gr}_{\check{G}}$ is the diagonal embedding, and \mathcal{A}_R is the perverse sheaf corresponding to the regular representation of \check{G} via the geometric Satake correspondence. Then

- MT_r is a (possibly singular) symplectic variety equipped with a Hamiltonian action of Ğ^r;
- 2) $MT_2 = T^*G$, $MT_1 = G \times S$, where $S \subset \mathfrak{g}^*$ is the Kostant-Slodowy slice ;
- 3) $MT_{r+s-2} \cong (MT_r \times MT_s) / / / \Delta(G)$ (the associativity).

For $r \geq 1$, define $MT_r := \operatorname{Spec} \left(H^*_{\check{G}[[t]]}(\operatorname{Gr}_{\check{G}}, i^!_{\Delta}(\mathcal{A}_R^{\boxtimes r})) \right)$, where \check{G} is the Langlands dual of G, $\operatorname{Gr}_{\check{G}} = \check{G}((t))/\check{G}[[t]]$, $i_{\Delta} : \operatorname{Gr}_{\check{G}} \to \operatorname{Gr}_{\check{G}} \times \cdots \times \operatorname{Gr}_{\check{G}}$ is the diagonal embedding, and \mathcal{A}_R is the perverse sheaf corresponding to the regular representation of \check{G} via the geometric Satake correspondence. Then

- MT_r is a (possibly singular) symplectic variety equipped with a Hamiltonian action of Ğ^r;
- 2) $MT_2 = T^*G$, $MT_1 = G \times S$, where $S \subset \mathfrak{g}^*$ is the Kostant-Slodowy slice ;
- 3) $MT_{r+s-2} \cong (MT_r \times MT_s) / / / \Delta(G)$ (the associativity).

$$MT_r = Higgs(S_G(\mathbb{P}^1 \text{ with } r \text{ puctures})).$$

$$\mathsf{MT}_r = \mathsf{Higgs}(S_G(\mathbb{P}^1 \text{ with } r \text{ puctures})).$$

For type A,

$$\mathsf{MT}_r = \mathsf{Higgs}(S_G(\mathbb{P}^1 \text{ with } r \text{ puctures})).$$

For type A, Moore-Tachikawa variety MT_r is isomorphic to the Coulomb branch of the 3D gauge theory associated with the star shaped quiver with r-legs ([BFN]).

$$MT_r = Higgs(S_G(\mathbb{P}^1 \text{ with } r \text{ puctures})).$$

For type A, Moore-Tachikawa variety MT_r is isomorphic to the Coulomb branch of the 3D gauge theory associated with the star shaped quiver with r-legs ([BFN]).

 \Rightarrow MT_r has a finitely many symplectic leaves ([Weekes]).

VOAs $\mathbb{V}(S_G(\Sigma))$

VOAs $\mathbb{V}(S_G(\Sigma))$ is called *chiral algebras of class* S [Beem-Peelaers-Rastellib-van Rees'15]

VOAs $\mathbb{V}(S_G(\Sigma))$ is called *chiral algebras of class* S [Beem-Peelaers-Rastellib-van Rees'15]

[BPRvR] conjectured that chiral algebras of class S should be also described in terms of 2D TQFT:

VOAs $\mathbb{V}(S_G(\Sigma))$ is called *chiral algebras of class* S [Beem-Peelaers-Rastellib-van Rees'15]

[BPRvR] conjectured that chiral algebras of class S should be also described in terms of 2D TQFT:

•
$$G \rightsquigarrow \widehat{\mathfrak{g}} = \mathfrak{g}[t, t^{-1}] \oplus \mathbb{C}K \ (\mathfrak{g} = \operatorname{Lie}(G));$$

VOAs $\mathbb{V}(S_G(\Sigma))$ is called *chiral algebras of class* S [Beem-Peelaers-Rastellib-van Rees'15]

[BPRvR] conjectured that chiral algebras of class S should be also described in terms of 2D TQFT:

- $G \rightsquigarrow \widehat{\mathfrak{g}} = \mathfrak{g}[t, t^{-1}] \oplus \mathbb{C}K \ (\mathfrak{g} = \operatorname{Lie}(G));$
- symplectic variety $X \rightsquigarrow$ a VOA V such that $X_V = X$;

VOAs $\mathbb{V}(S_G(\Sigma))$ is called *chiral algebras of class* S [Beem-Peelaers-Rastellib-van Rees'15]

[BPRvR] conjectured that chiral algebras of class S should be also described in terms of 2D TQFT:

- $G \rightsquigarrow \widehat{\mathfrak{g}} = \mathfrak{g}[t, t^{-1}] \oplus \mathbb{C}K \ (\mathfrak{g} = \operatorname{Lie}(G));$
- symplectic variety $X \rightsquigarrow$ a VOA V such that $X_V = X$;
- moment map μ : X → g* → homomorphism V^k(g) → V such that the induced morphism X_V → X_{V^k(g)} = g* coincides with μ;

VOAs $\mathbb{V}(S_G(\Sigma))$ is called *chiral algebras of class* S [Beem-Peelaers-Rastellib-van Rees'15]

[BPRvR] conjectured that chiral algebras of class S should be also described in terms of 2D TQFT:

- $G \rightsquigarrow \widehat{\mathfrak{g}} = \mathfrak{g}[t, t^{-1}] \oplus \mathbb{C}K \ (\mathfrak{g} = \operatorname{Lie}(G));$
- symplectic variety $X \rightsquigarrow$ a VOA V such that $X_V = X$;
- moment map μ : X → g* → homomorphism V^k(g) → V such that the induced morphism X_V → X_{V^k(g)} = g* coincides with μ;
- $(X \times Y) / / / \Delta(G) \rightsquigarrow H^{\infty/2+\bullet}(\widehat{\mathfrak{g}}, \mathfrak{g}, V_1 \otimes V_2)$
VOAs $\mathbb{V}(S_G(\Sigma))$ is called *chiral algebras of class* S [Beem-Peelaers-Rastellib-van Rees'15]

[BPRvR] conjectured that chiral algebras of class S should be also described in terms of 2D TQFT:

Want to:

- $G \rightsquigarrow \widehat{\mathfrak{g}} = \mathfrak{g}[t, t^{-1}] \oplus \mathbb{C}K \ (\mathfrak{g} = \operatorname{Lie}(G));$
- symplectic variety $X \rightsquigarrow$ a VOA V such that $X_V = X$;
- moment map μ : X → g* → homomorphism V^k(g) → V such that the induced morphism X_V → X_{V^k(g)} = g* coincides with μ;
- $(X \times Y) / / / \Delta(G) \rightsquigarrow H^{\infty/2+\bullet}(\widehat{\mathfrak{g}}, \mathfrak{g}, V_1 \otimes V_2)$ $(X_{H^{\infty/2+\bullet}(\widehat{\mathfrak{g}}, \mathfrak{g}, V_1 \otimes V_2)} \cong (X_{V_1} \times X_{V_2}) / / / \Delta(G)$ in "nice" cases.)

VOAs $\mathbb{V}(S_G(\Sigma))$ is called *chiral algebras of class* S [Beem-Peelaers-Rastellib-van Rees'15]

[BPRvR] conjectured that chiral algebras of class S should be also described in terms of 2D TQFT:

Want to:

- $G \rightsquigarrow \widehat{\mathfrak{g}} = \mathfrak{g}[t, t^{-1}] \oplus \mathbb{C}K \ (\mathfrak{g} = \operatorname{Lie}(G));$
- symplectic variety $X \rightsquigarrow$ a VOA V such that $X_V = X$;
- moment map μ : X → g* → homomorphism V^k(g) → V such that the induced morphism X_V → X_{V^k(g)} = g* coincides with μ;
- $(X \times Y)///\Delta(G) \rightsquigarrow H^{\infty/2+\bullet}(\widehat{\mathfrak{g}}, \mathfrak{g}, V_1 \otimes V_2)$ $(X_{H^{\infty/2+\bullet}(\widehat{\mathfrak{g}}, \mathfrak{g}, V_1 \otimes V_2)} \cong (X_{V_1} \times X_{V_2})///\Delta(G)$ in "nice" cases.) The level of $V_1 \otimes V_2$ must be $-2h^{\vee}$,

VOAs $\mathbb{V}(S_G(\Sigma))$ is called *chiral algebras of class* S [Beem-Peelaers-Rastellib-van Rees'15]

[BPRvR] conjectured that chiral algebras of class S should be also described in terms of 2D TQFT:

Want to:

- $G \rightsquigarrow \widehat{\mathfrak{g}} = \mathfrak{g}[t, t^{-1}] \oplus \mathbb{C}K \ (\mathfrak{g} = \operatorname{Lie}(G));$
- symplectic variety $X \rightsquigarrow$ a VOA V such that $X_V = X$;
- moment map μ : X → g* → homomorphism V^k(g) → V such that the induced morphism X_V → X_{V^k(g)} = g* coincides with μ;
- $(X \times Y)///\Delta(G) \rightsquigarrow H^{\infty/2+\bullet}(\widehat{\mathfrak{g}}, \mathfrak{g}, V_1 \otimes V_2)$ $(X_{H^{\infty/2+\bullet}(\widehat{\mathfrak{g}}, \mathfrak{g}, V_1 \otimes V_2)} \cong (X_{V_1} \times X_{V_2})///\Delta(G)$ in "nice" cases.) The level of $V_1 \otimes V_2$ must be $-2h^{\vee}$, i.e., $k = -h^{\vee}$.

•
$$MT_2 = T^*G \rightsquigarrow$$

MT₂ = T*G → D^{ch}_{G,-h[∨]}, (global) cdo on G
 [Malikov-Schechtman-Vaintrob, Beilinson-Drinfeld] at the critical level k = -h[∨]

 MT₂ = T^{*}G → D^{ch}_{G,-h[∨]}, (global) cdo on G [Malikov-Schechtman-Vaintrob, Beilinson-Drinfeld] at the critical level k = −h[∨] (X_{D^{ch}_{G,k}} ≅ T^{*}G);

- MT₂ = T^{*}G → D^{ch}_{G,-h[∨]}, (global) cdo on G [Malikov-Schechtman-Vaintrob, Beilinson-Drinfeld] at the critical level k = −h[∨] (X_{D^{ch}_{G,k}} ≅ T^{*}G);
- MT₁ = G × S is obtained from MT₂ = T^{*}G by Kostant reduction X → X ×_{g*} S.

- MT₂ = T^{*}G → D^{ch}_{G,-h[∨]}, (global) cdo on G [Malikov-Schechtman-Vaintrob, Beilinson-Drinfeld] at the critical level k = −h[∨] (X_{D^{ch}_{G,k}} ≅ T^{*}G);
- $MT_1 = G \times S$ is obtained from $MT_2 = T^*G$ by Kostant reduction $X \mapsto X \times_{\mathfrak{g}^*} S$. $MT_1 \rightsquigarrow H^0_{DS}(\mathcal{D}^{ch}_{G,-h^{\vee}})$ $(X_{H^0_{DS}(\mathcal{D}^{ch}_{G,-h^{\vee}})} = T^*G \times_{\mathfrak{g}^*} S = G \times S)$

For each semisimple group G, there exists a unique family of VAs $\{V_r \mid r \geq 1\}$ such that

For each semisimple group G, there exists a unique family of VAs $\{ \bm{V}_r \mid r \geq 1 \}$ such that

1) \exists a vertex algebra homomorphism $V^{-h^{\vee}}(\mathfrak{g})^{\otimes r} \to \mathbf{V}_r$ and the $\mathfrak{g}[t]^{\oplus r}$ -action on \mathbf{V}_r integrates to the action of $\overbrace{G[[t]] \times \cdots \times G[[t]]}^r$;

For each semisimple group G, there exists a unique family of VAs $\{ \bm{V}_r \mid r \geq 1 \}$ such that

 ∃ a vertex algebra homomorphism V^{-h[∨]}(g)^{⊗r} → V_r and the g[t]^{⊕r}-action on V_r integrates to the action of ^r
 G[[t]] × ··· × G[[t]];

 V₂ = D^{ch}_{G,-h[∨]} and V₁ = H⁰_{DS}(D^{ch}_{G,-h[∨]});

For each semisimple group G, there exists a unique family of VAs $\{ \bm{V}_r \mid r \geq 1 \}$ such that

Moreover,

a) each \mathbf{V}_r is simple

Moreover,

a) each \mathbf{V}_r is simple and conformal with central charge dim $(MT_r) - 24(r-2)(\rho|\rho^{\vee}) =$ $r \dim \mathfrak{g} - (r-2) \operatorname{rk} \mathfrak{g} - 24(r-2)(\rho|\rho^{\vee});$

Moreover,

a) each V_r is simple and conformal with central charge dim(MT_r) - 24(r - 2)(ρ|ρ[∨]) = r dim g - (r - 2) rk g - 24(r - 2)(ρ|ρ[∨]);
b) For z₁...z_r ∈ T^r, tr_{V_r}(q^{L₀}z₁...z_r) = ∑_{λ∈P₊} ((q^(λ,ρ[∨]) ∏_{j=1}[∞](1-q^j)^{rkg})/(∏_{α∈Δ₊}(1-q^(λ+ρ,α[∨]))) ^{r-2} ∏_{i=1}^r tr_{V_λ}(q^{-D}z_i), where V_λ = U(g) ⊗_{U(g[t]⊕CK)} E_λ is the Weyl module at the critical level;

Moreover,

a) each V_r is simple and conformal with central charge dim(MT_r) - 24(r - 2)(ρ|ρ[∨]) = r dim g - (r - 2) rk g - 24(r - 2)(ρ|ρ[∨]);
b) For z₁...z_r ∈ T^r, tr_{V_r}(q^{L₀}z₁...z_r) = ∑_{λ∈P₊} (q^(λ,ρ[∨]) ∏_{j=1}[∞](1-q^j)^{rkg}</sup>) ^{r-2} ∏_{i=1}^r tr_{V_λ}(q^{-D}z_i), where V_λ = U(ĝ) ⊗_{U(g[t]⊕CK)} E_λ is the Weyl module at the critical level;

c) $X_{\mathbf{V}_r} \cong \mathsf{MT}_r$.

According to [BPRvR], Theorem (1)-(3) and (a)-(b) are the properties that $\mathbb{V}(S_G(\mathbb{P}^1 \text{ with } r \text{ punctures}))$ should have

According to [BPRvR], Theorem (1)-(3) and (a)-(b) are the properties that $\mathbb{V}(S_G(\mathbb{P}^1 \text{ with } r \text{ punctures}))$ should have

$$\Rightarrow \mathbf{V}_r = \mathbb{V}(S_G(\mathbb{P}^1 \text{ with } r \text{ punctures})).$$

According to [BPRvR], Theorem (1)-(3) and (a)-(b) are the properties that $\mathbb{V}(S_G(\mathbb{P}^1 \text{ with } r \text{ punctures}))$ should have

$$\Rightarrow \mathbf{V}_r = \mathbb{V}(S_G(\mathbb{P}^1 \text{ with } r \text{ punctures})).$$

Moreover, by Theorem (c), we conclude that Beem-Rastelli conjecture is true for the class S theory.

We can in principle compute the chiral algebras of class $\mathcal{S}.$

We can in principle compute the chiral algebras of class $\ensuremath{\mathcal{S}}.$

 $G = SL_2$

We can in principle compute the chiral algebras of class $\ensuremath{\mathcal{S}}.$

 $G = SL_2$

 MT_3

We can in principle compute the chiral algebras of class $\mathcal{S}.$

 $G = SL_2$

 $\mathsf{MT}_3 \, = \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2,$

We can in principle compute the chiral algebras of class $\ensuremath{\mathcal{S}}.$

 $G = SL_2$

 $\mathsf{MT}_3 \, = \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2, \quad \mathbb{C}^2 \curvearrowleft \mathit{SL}_2$

We can in principle compute the chiral algebras of class \mathcal{S} .

 $G = SL_2$

 $\mathsf{MT}_3 \, = \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2, \quad \mathbb{C}^2 \curvearrowleft \mathit{SL}_2$

 $V_3 = \beta \gamma$ system associated to the symplectic vector space $(\mathbb{C}^2)^{\otimes 3}$ (affinization of the Weyl algebra).

We can in principle compute the chiral algebras of class \mathcal{S} .

 $G = SL_2$

 $\mathsf{MT}_3 \, = \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2, \quad \mathbb{C}^2 \curvearrowleft \mathit{SL}_2$

 $V_3 = \beta \gamma$ system associated to the symplectic vector space $(\mathbb{C}^2)^{\otimes 3}$ (affinization of the Weyl algebra).

 MT_4

We can in principle compute the chiral algebras of class \mathcal{S} .

 $G = SL_2$

 $\mathsf{MT}_3 \, = \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2, \quad \mathbb{C}^2 \curvearrowleft \mathit{SL}_2$

 $V_3 = \beta \gamma$ system associated to the symplectic vector space $(\mathbb{C}^2)^{\otimes 3}$ (affinization of the Weyl algebra).

 $\mathsf{MT}_4 = \overline{\mathbb{O}_{\textit{min}}} \text{ in } D_4$

We can in principle compute the chiral algebras of class \mathcal{S} .

 $G = SL_2$

 $\mathsf{MT}_3 = \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2, \quad \mathbb{C}^2 \curvearrowleft SL_2$

 $V_3 = \beta \gamma$ system associated to the symplectic vector space $(\mathbb{C}^2)^{\otimes 3}$ (affinization of the Weyl algebra).

We can in principle compute the chiral algebras of class \mathcal{S} .

 $G = SL_2$

 $\mathsf{MT}_3 = \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2, \quad \mathbb{C}^2 \curvearrowleft SL_2$

 $V_3 = \beta \gamma$ system associated to the symplectic vector space $(\mathbb{C}^2)^{\otimes 3}$ (affinization of the Weyl algebra).

 $V_4 = L_{-2}(D_4)$, the simple affine vertex algebra associated with D_4 at level -2 (conjectured by [BL²PRvR]).

The isomorphism $X_{L_{-2}(D_4)} \cong \overline{\mathbb{O}_{min}}$ reproves a result in [A.-Moreau'16].

The isomorphism $X_{L_{-2}(D_4)} \cong \overline{\mathbb{O}_{min}}$ reproves a result in [A.-Moreau'16].

The associativities imply:

• $((\mathbb{C}^2)^{\otimes 3} \times (\mathbb{C}^2)^{\otimes 3}) / \Delta(SL_2) \cong \overline{\mathbb{O}_{min}},$

The isomorphism $X_{L_{-2}(D_4)} \cong \overline{\mathbb{O}_{min}}$ reproves a result in [A.-Moreau'16].

The associativities imply:

• $((\mathbb{C}^2)^{\otimes 3} \times (\mathbb{C}^2)^{\otimes 3}) / \Delta(SL_2) \cong \overline{\mathbb{O}_{min}},$ (ADHM construction of $\overline{\mathbb{O}_{min}}$)

The isomorphism $X_{L_{-2}(D_4)} \cong \overline{\mathbb{O}_{min}}$ reproves a result in [A.-Moreau'16].

The associativities imply:

- $((\mathbb{C}^2)^{\otimes 3} \times (\mathbb{C}^2)^{\otimes 3}) / \Delta(SL_2) \cong \overline{\mathbb{O}_{min}},$ (ADHM construction of $\overline{\mathbb{O}_{min}}$)
- $H^{\infty/2+i}(\widehat{\mathfrak{sl}}_2,\mathfrak{sl}_2,\beta\gamma((\mathbb{C}^2)^{\otimes 3})\otimes\beta\gamma((\mathbb{C}^2)^{\otimes 3})\cong\delta_{i,0}L_{-2}(D_4)$

The isomorphism $X_{L_{-2}(D_4)} \cong \overline{\mathbb{O}_{min}}$ reproves a result in [A.-Moreau'16].

The associativities imply:

- $((\mathbb{C}^2)^{\otimes 3} \times (\mathbb{C}^2)^{\otimes 3}) / \Delta(SL_2) \cong \overline{\mathbb{O}_{min}},$ (ADHM construction of $\overline{\mathbb{O}_{min}}$)
- $H^{\infty/2+i}(\widehat{\mathfrak{sl}}_2,\mathfrak{sl}_2,\beta\gamma((\mathbb{C}^2)^{\otimes 3})\otimes\beta\gamma((\mathbb{C}^2)^{\otimes 3})\cong\delta_{i,0}L_{-2}(D_4)$

Also, the MLDE method gives

$${
m tr}_{L_{-2}(D_4)}(q^{L_0-c/24})=rac{E_4'(au)}{240\eta(au)^{10}}$$

([A.-Kawasetsu]).

$$G = SL_3$$

$$G = SL_3$$

MT₃ = $\overline{\mathbb{O}_{min}}$ in E_6

Examples (continued)

$$G = SL_3$$

 $MT_3 = \overline{\mathbb{O}_{min}}$ in E_6 .

 $V_3 = L_{-3}(E_6).$

Examples (continued)

$$G = SL_3$$

MT₃ = $\overline{\mathbb{O}_{min}}$ in E_6 .

 $V_3 = L_{-3}(E_6).$

In general, neither MT_r nor V_r has a simple description.

 $\boldsymbol{V}_2 = \mathcal{D}_{\boldsymbol{G},-\boldsymbol{h}^\vee}^{c\boldsymbol{h}}$ should satisfy

$$H^{\infty/2+i}(\widehat{\mathfrak{g}},\mathfrak{g},\mathcal{D}^{ch}_{G,-h^{\vee}}\otimes \mathbf{V}_r)\cong \mathbf{V}_r.$$

 $\boldsymbol{V}_2 = \mathcal{D}_{\boldsymbol{G},-\boldsymbol{h}^{\vee}}^{ch}$ should satisfy

$$H^{\infty/2+i}(\widehat{\mathfrak{g}},\mathfrak{g},\mathcal{D}^{ch}_{G,-h^{\vee}}\otimes \mathbf{V}_r)\cong \mathbf{V}_r.$$

Why?

 $\mathbf{V}_2 = \mathcal{D}^{ch}_{G,-h^{ee}}$ should satisfy

$$H^{\infty/2+i}(\widehat{\mathfrak{g}},\mathfrak{g},\mathcal{D}^{ch}_{G,-h^{\vee}}\otimes \mathbf{V}_r)\cong \mathbf{V}_r.$$

Why?

By definition,

$$\mathcal{D}^{ch}_{G,-h^{ee}}\operatorname{-Mod}\cong \mathcal{D}_{G((t))}\operatorname{-Mod}_{-h^{ee}}$$

([Arkhipov-Gaitsgory]).

 $\mathbf{V}_2 = \mathcal{D}^{ch}_{G,-h^{ee}}$ should satisfy

$$H^{\infty/2+i}(\widehat{\mathfrak{g}},\mathfrak{g},\mathcal{D}^{ch}_{G,-h^{\vee}}\otimes \mathbf{V}_r)\cong \mathbf{V}_r.$$

Why?

By definition,

$$\mathcal{D}^{ch}_{G,-h^{ee}}\operatorname{-Mod}\cong\mathcal{D}_{G((t))}\operatorname{-Mod}_{-h^{ee}}$$

([Arkhipov-Gaitsgory]). Hence,

$$\mathcal{D}^{ch}_{G,-h^{\vee}}\operatorname{-Mod}^{G[[t]]}\cong\mathcal{D}_{\operatorname{Gr}_{G}}\operatorname{-Mod}_{-h^{\vee}},$$

 $\mathbf{V}_2 = \mathcal{D}^{ch}_{G,-h^{ee}}$ should satisfy

$$H^{\infty/2+i}(\widehat{\mathfrak{g}},\mathfrak{g},\mathcal{D}^{ch}_{G,-h^{\vee}}\otimes \mathbf{V}_r)\cong \mathbf{V}_r.$$

Why?

By definition,

$$\mathcal{D}^{ch}_{G,-h^{ee}}\operatorname{-Mod}\cong\mathcal{D}_{G((t))}\operatorname{-Mod}_{-h^{ee}}$$

([Arkhipov-Gaitsgory]). Hence,

$$\mathcal{D}^{ch}_{G,-h^{ee}}\operatorname{-Mod}^{G[[t]]}\cong\mathcal{D}_{\operatorname{Gr}_{G}}\operatorname{-Mod}_{-h^{ee}},$$

where $\mathcal{D}^{ch}_{G,-h^{\vee}}$ itself corresponds to the δ -function D-module δ_e at the identity.

 $\mathcal{D}^{ch}_{G,-h^{\vee}}\operatorname{-Mod}^{G[[t]]\times G[[t]]}\cong \mathcal{D}_{\operatorname{Gr}_{G}}\operatorname{-Mod}_{-h^{\vee}}^{G[[t]]}\cong \operatorname{Rep}(\check{G}).$

$$\mathcal{D}^{ch}_{G,-h^{\vee}}\operatorname{-Mod}^{G[[t]]\times G[[t]]}\cong \mathcal{D}_{\operatorname{Gr}_{G}}\operatorname{-Mod}_{-h^{\vee}}^{G[[t]]}\cong \operatorname{Rep}(\check{G}).$$

Via this equivalence the monodical structure of $\mathcal{D}_{G,-h^{\vee}}^{ch}$ -Mod^{G[[t]] × G[[t]]} is given by

$$M\otimes \mathsf{N}\mapsto H^{\infty/2+ullet}(\widehat{\mathfrak{g}},\mathfrak{g},M\otimes \mathsf{N})$$

 $([{\sf Frenkel-Gaitsgory}]).$

$$\mathcal{D}_{G,-h^{\vee}}^{ch}\operatorname{-Mod}^{G[[t]]\times G[[t]]}\cong \mathcal{D}_{\operatorname{Gr}_{G}}\operatorname{-Mod}_{-h^{\vee}}^{G[[t]]}\cong \operatorname{Rep}(\check{G}).$$

Via this equivalence the monodical structure of $\mathcal{D}_{G,-h^{\vee}}^{ch}$ -Mod^{G[[t]] × G[[t]]} is given by

$$M\otimes \mathsf{N}\mapsto H^{\infty/2+ullet}(\widehat{\mathfrak{g}},\mathfrak{g},M\otimes\mathsf{N})$$

([Frenkel-Gaitsgory]). Because $\mathcal{D}_{G,-h^{\vee}}^{ch} \leftrightarrow \delta_e \leftrightarrow \mathbb{C}$,

$$\mathcal{D}_{G,-h^{\vee}}^{ch}\operatorname{-Mod}^{G[[t]]\times G[[t]]}\cong \mathcal{D}_{\operatorname{Gr}_{G}}\operatorname{-Mod}_{-h^{\vee}}^{G[[t]]}\cong \operatorname{Rep}(\check{G}).$$

Via this equivalence the monodical structure of $\mathcal{D}_{G,-h^{\vee}}^{ch}$ -Mod^{G[[t]] × G[[t]]} is given by

$$M\otimes \mathsf{N}\mapsto H^{\infty/2+ullet}(\widehat{\mathfrak{g}},\mathfrak{g},M\otimes \mathsf{N})$$

([Frenkel-Gaitsgory]). Because $\mathcal{D}_{G,-h^{\vee}}^{ch} \leftrightarrow \delta_{e} \leftrightarrow \mathbb{C}$,

$$H^{\infty/2+\bullet}(\widehat{\mathfrak{g}},\mathfrak{g},\mathcal{D}^{ch}_{G,-h^{\vee}}\otimes M)\cong M,$$

$$\mathcal{D}_{G,-h^{\vee}}^{ch}\operatorname{-Mod}^{G[[t]]\times G[[t]]}\cong \mathcal{D}_{\operatorname{Gr}_{G}}\operatorname{-Mod}_{-h^{\vee}}^{G[[t]]}\cong \operatorname{Rep}(\check{G}).$$

Via this equivalence the monodical structure of $\mathcal{D}_{G,-h^{\vee}}^{ch}$ -Mod^{G[[t]] × G[[t]]} is given by

$$M\otimes N\mapsto H^{\infty/2+ullet}(\widehat{\mathfrak{g}},\mathfrak{g},M\otimes N)$$

([Frenkel-Gaitsgory]). Because $\mathcal{D}_{G,-h^{\vee}}^{ch} \leftrightarrow \delta_e \leftrightarrow \mathbb{C}$,

$$H^{\infty/2+\bullet}(\widehat{\mathfrak{g}},\mathfrak{g},\mathcal{D}^{ch}_{G,-h^{\vee}}\otimes M)\cong M,$$

and one can check this isomorphism holds for any $\hat{\mathfrak{g}}$ -module M at the critical level on which the $\mathfrak{g}[t]$ -action integrates to the action of G[[t]] ([Arkhipov-Gaitsgory]).

 $H^{\infty/2+i}(\widehat{\mathfrak{g}},\mathfrak{g},\mathbf{V}_1\otimes\mathbf{V}_r)\cong\delta_{i,0}\mathbf{V}_{r-1}.$

$$H^{\infty/2+i}(\widehat{\mathfrak{g}},\mathfrak{g},\mathbf{V}_1\otimes\mathbf{V}_r)\cong\delta_{i,0}\mathbf{V}_{r-1}.$$

Proposition

 $H^{\infty/2+i}(\widehat{\mathfrak{g}},\mathfrak{g},\mathbf{V}_1\otimes M)\cong \delta_{i,0}H^0_{DS}(M).$

$$H^{\infty/2+i}(\widehat{\mathfrak{g}},\mathfrak{g},\mathsf{V}_1\otimes\mathsf{V}_r)\cong\delta_{i,0}\mathsf{V}_{r-1}.$$

Proposition

 $H^{\infty/2+i}(\widehat{\mathfrak{g}},\mathfrak{g},\mathbf{V}_1\otimes M)\cong \delta_{i,0}H^0_{DS}(M).$

 $\Rightarrow \mathbf{V}_{r-1} = H^0_{DS}(\mathbf{V}_r).$

$$H^{\infty/2+i}(\widehat{\mathfrak{g}},\mathfrak{g},\mathbf{V}_1\otimes\mathbf{V}_r)\cong\delta_{i,0}\mathbf{V}_{r-1}.$$

Proposition

$$H^{\infty/2+i}(\widehat{\mathfrak{g}},\mathfrak{g},\mathbf{V}_1\otimes M)\cong \delta_{i,0}H^0_{DS}(M).$$

$$\Rightarrow \mathbf{V}_{r-1} = H^0_{DS}(\mathbf{V}_r).$$

So it is enough to construct an inverse functor to $H_{DS}^0(?)$.

$$H^{\infty/2+i}(\widehat{\mathfrak{g}},\mathfrak{g},\mathbf{V}_1\otimes\mathbf{V}_r)\cong\delta_{i,0}\mathbf{V}_{r-1}.$$

Proposition

$$H^{\infty/2+i}(\widehat{\mathfrak{g}},\mathfrak{g},\mathbf{V}_1\otimes M)\cong \delta_{i,0}H^0_{DS}(M).$$

$$\Rightarrow \mathbf{V}_{r-1} = H^0_{DS}(\mathbf{V}_r).$$

So it is enough to construct an inverse functor to $H_{DS}^0(?)$.

Equivalently, we want to recover everything from V_1 .

Construction of V_r

Example: $\boldsymbol{V}_2 = \mathcal{D}_{G}^{ch}$

 $\boldsymbol{V}_2 = \mathcal{D}_{\textit{G}}^{\textit{ch}}$ has two commuting action of $\widehat{\mathfrak{g}}$ at the critical level

- $\boldsymbol{V}_2 = \mathcal{D}_{\textit{G}}^{\textit{ch}}$ has two commuting action of $\widehat{\mathfrak{g}}$ at the critical level
- \textbf{V}_1 has one action of $\widehat{\mathfrak{g}}$ at the critical level

 $\textbf{V}_2=\mathcal{D}_{\textit{G}}^{\textit{ch}}$ has two commuting action of $\widehat{\mathfrak{g}}$ at the critical level

 \textbf{V}_1 has one action of $\widehat{\mathfrak{g}}$ at the critical level

Easy guess:

 $\boldsymbol{V}_2 = \mathcal{D}_{\textit{G}}^{\textit{ch}}$ has two commuting action of $\widehat{\mathfrak{g}}$ at the critical level

 \textbf{V}_1 has one action of $\widehat{\mathfrak{g}}$ at the critical level

Easy guess: $V_2 = V_1 \otimes V_1$?

 $\mathbf{V}_2 = \mathcal{D}_G^{ch}$ has two commuting action of $\hat{\mathfrak{g}}$ at the critical level \mathbf{V}_1 has one action of $\hat{\mathfrak{g}}$ at the critical level Easy guess: $\mathbf{V}_2 = \mathbf{V}_1 \otimes \mathbf{V}_1$? No,

 $\mathbf{V}_2 = \mathcal{D}_G^{ch}$ has two commuting action of $\hat{\mathfrak{g}}$ at the critical level \mathbf{V}_1 has one action of $\hat{\mathfrak{g}}$ at the critical level Easy guess: $\mathbf{V}_2 = \mathbf{V}_1 \otimes \mathbf{V}_1$? No, because the action of the two Feigin-Frenlel center on

 $\mathbf{V}_2 = \mathcal{D}_{G,-h^{\vee}}^{ch}$ is the same.

 $\mathbf{V}_2 = \mathcal{D}_G^{ch}$ has two commuting action of $\hat{\mathfrak{g}}$ at the critical level \mathbf{V}_1 has one action of $\hat{\mathfrak{g}}$ at the critical level Easy guess: $\mathbf{V}_2 = \mathbf{V}_1 \otimes \mathbf{V}_1$?

No, because the action of the two Feigin-Frenlel center on $V_2 = \mathcal{D}^{ch}_{G,-h^{\vee}}$ is the same.

We can kill the difference of the two action of the center on $\bm{V}_1\otimes\bm{V}_1,$ or more generally,

 $\mathbf{V}_2 = \mathcal{D}_G^{ch}$ has two commuting action of $\hat{\mathfrak{g}}$ at the critical level \mathbf{V}_1 has one action of $\hat{\mathfrak{g}}$ at the critical level Easy guess: $\mathbf{V}_2 = \mathbf{V}_1 \otimes \mathbf{V}_1$?

No, because the action of the two Feigin-Frenlel center on $V_2 = \mathcal{D}^{ch}_{G,-h^{\vee}}$ is the same.

We can kill the difference of the two action of the center on $V_1 \otimes V_1$, or more generally, on $V_1^{\otimes r}$, using a certain BRST cohomology.

Construction of V_r

 $\mathfrak{z}(\widehat{\mathfrak{g}})$: Feigin-Frenkel center of $\widehat{\mathfrak{g}}$ at the critical level generated by $p_1(z), \ldots, p_{\mathsf{rk}(\mathfrak{g})}(z)$.

Construction of V_r

where

 $\mathfrak{z}(\widehat{\mathfrak{g}})$: Feigin-Frenkel center of $\widehat{\mathfrak{g}}$ at the critical level generated by $p_1(z), \ldots, p_{\mathsf{rk}(\mathfrak{g})}(z)$.

$$\mathbf{V}_r := H^0_{BRST}(\mathbf{V}_1^{\otimes r} \otimes (\otimes_{i=1}^{\mathsf{rk}(\mathfrak{g})}(b_i, c_i))^{\otimes r-1}, Q_{(0)})$$

$$egin{aligned} Q(z) &= \sum_{i=1}^{r-1} Q_{i,i+1}(z), \ Q_{i,i+1}(z) &= \sum_{j=1}^{\mathsf{rk}(\mathfrak{g})} (\pi_i(p_j(z)) - \pi_{i+1}(p_j(z))) c_j^{(i)}(z). \end{aligned}$$

Construction of V_r

 $\mathfrak{z}(\widehat{\mathfrak{g}})$: Feigin-Frenkel center of $\widehat{\mathfrak{g}}$ at the critical level generated by $p_1(z), \ldots, p_{\mathsf{rk}(\mathfrak{g})}(z)$.

$$\mathbf{V}_r := H^0_{BRST}(\mathbf{V}_1^{\otimes r} \otimes (\otimes_{i=1}^{\mathsf{rk}(\mathfrak{g})} (b_i, c_i))^{\otimes r-1}, Q_{(0)})$$

where

$$egin{aligned} Q(z) &= \sum_{i=1}^{r-1} Q_{i,i+1}(z), \ Q_{i,i+1}(z) &= \sum_{j=1}^{\mathsf{rk}(\mathfrak{g})} (\pi_i(p_j(z)) - \pi_{i+1}(p_j(z))) c_j^{(i)}(z). \end{aligned}$$

One can check that the above defined \mathbf{V}_r satisfies the required properties.

Thank you!