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4D/2D Correspondence

Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees ’15 ([BL2PRvR]):

V : {4D N = 2 SCFTs} −→ {2D chiral CFTs (VOAs)}

s.t.

the Schur index of T = χV(T ) := trV(T )(q
L0−cχ(V )/24).

• V is injective in examples so far.

• V(T ) is never unitary (reason: c2D = −12c4D). In particular,

V is not surjective.
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Beem-Rastelli Conjecture

Conjecture (Beem-Rastelli ’18)

For any 4D N = 2 SCFT T , we have

Higgs(T ) ∼= XV(T ),

where XV is the associated variety of a VOA V .

The associated variety is defined as

XV = SpecmRV ,

where RV = V /C2(V ) is Zhu’s C2 algebra of V defined as follows:

By the state-field correspondence we can write

V = spanC{ ◦
◦ (∂

n1a1(z)) . . . (∂
nr ar (z))

◦
◦ }.

C2(V ) is the subspace of V spanned by the elements of the above

form with n1 + · · ·+ nr ≥ 1.
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Beem-Rastelli Conjecture

⇒ RV = V /C2(V )

is a Poisson algebra by

f (z).g(z) = ◦
◦ f (z)g(z)

◦
◦ ,

{f (z), g(z)} = Resw=z f (w)g(z).

Remark

The Higgs branch Higgs(T ) is a hyperkähler cone, while the associ-

ated variety XV of a VOA V is only a Poisson variety in general.
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Examples of associated varieties

ĝ = g[t, t−1]⊕ CK affine Kac-Moody algebra associated with g

V k(g) = U(ĝ)⊗U(g[t]⊕CK) Ck the universal affine vertex algebra

associated with g at level k ∈ C.

V k(g) is generated by x(z) (x ∈ g) with OPEs

x(z)y(w) ∼ [x , y ](w)/(z − w) + k(x |y)/(z − w)2.

(a V k(g)-module = a smooth ĝ-module of level k)

We have

XV k (g) = g∗.

Lk(g) the simple quotient of V k(g)

XLk(g) ⊂ g∗, G -invariant and conic.
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Example of VOA coming from 4D N = 2 SCFT

• Lk(g) is integrable (k ∈ Z≥0) ⇒ XLk(g) = {0} (a fat point).

In fact, the converse is true.

• In general, a VOA V is called lisse (or C2-cofinite) if

dimXV = 0. A lisse VOA has very nice properties such as

finiteness of simple modules, the modularity of characters, and

the existence of the vertex tensor categories ([Yongchang Zhu,

Gaberdiel-Neitzke, Miyamoto, Yi-Zhi Huang] )

• Lk(g) is admissible ⇒ XLk(g) = Ok , ∃ nilpotent orbit Ok ⊂ g∗

([A’15]).

Xie-Yan-Yau’16, Song-Xie-Yan’17

Lk(g) appears as V(T ) for some Argyres-Douglas theory T if k is

boundary admissible.
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Quasi-lisse VOAs

Definition (A.-Kawasetsu’18)

A VOA V is called quasi-lisse if XV has finitely many symplectic

leaves.

V(T ) is expected to be quasi-lisse.

Remark

• Lk(g) is quasi-lisse ⇐⇒ XLk (g) ⊂ N , the nilpotent cone of g.

• In particular, an admissible affine vertex algebras Lk(g) is

quasi-lisse.

• Let g ∈ DES: A1 ⊂ A2 ⊂ G2 ⊂ D4 ⊂ F4 ⊂ E6 ⊂ E7 ⊂ E8 and

k = −h∨/6− 1. Then XLk (g) = Omin the minimal nilpotent

orbit closure in g and so Lk(g) is quasi-lisse ([A.-Moreau’16]).

These are VOAs that appeared in [BL2PRvR] as examples of

V(T ).
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Modularity of Schur index

Theorem (A.-Kawasetsu’18)

Let V be a quasi-lisse VOA.

1) There exists only finitely many simple ordinary representations

of V ;

2) For an ordinary representation M, trM(qL0−cχ(V )/24) converges

to a holomorphic function on the upper half place. Moreover,

{trM(qL0−cχ(V )/24) | M ordinary } is a subspace of the space of

the solutions of a modular linear differential equation (MLDE).

Together with Beem-Rastelli conjecture, the above theorem implies

the modularity of the Schur index of a 4D N = 2 SCFT.

8
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Beem-Rastelli Conjecture for Class S theory

The theory of class S ([Gaiotto’12])

{
SG (Σ) |

Σ: a punctured Riemann surface,

G : complex semisimple group

}

• Moore-Tachikawa’12 gave a mathematical description of the

Higgs branch of SG (Σ) in terms of 2D TQFT, up to a

conjecture.

• This Moore-Tachikawa conjecture was proved by

Braverman-Finkelberg-Nakajima’19.

According to Moore-Tachikawa, it is sufficient to describe

Higgs(SG (Σ)) for genus zero Σ.
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Braverman-Finkelberg-Nakajima construction

Theorem (BFN’19)

For r ≥ 1, define MTr := Spec
(
H∗
Ǧ [[t]]

(GrǦ , i
!
∆(A⊠rR ))

)
, where

Ǧ is the Langlands dual of G , GrǦ = Ǧ ((t))/Ǧ [[t]], i∆ : GrǦ →
r︷ ︸︸ ︷

GrǦ × · · · × GrǦ is the diagonal embedding, and AR is the per-

verse sheaf corresponding to the regular representation of Ǧ via

the geometric Satake correspondence. Then

1) MTr is a (possibly singular) symplectic variety equipped with a

Hamiltonian action of Ǧ r ;

2) MT2 = T ∗G, MT1 = G × S, where S ⊂ g∗ is the

Kostant-Slodowy slice ;

3) MTr+s−2
∼= (MTr ×MTs)///∆(G ) (the associativity).
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r︷ ︸︸ ︷
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the geometric Satake correspondence. Then

1) MTr is a (possibly singular) symplectic variety equipped with a

Hamiltonian action of Ǧ r ;
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(GrǦ , i
!
∆(A⊠rR ))

)
, where
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GrǦ × · · · × GrǦ is the diagonal embedding, and AR is the per-

verse sheaf corresponding to the regular representation of Ǧ via

the geometric Satake correspondence. Then

1) MTr is a (possibly singular) symplectic variety equipped with a

Hamiltonian action of Ǧ r ;
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Relation to Coulomb branches

We get:

MTr = Higgs(SG (P1 with r puctures)).

For type A, Moore-Tachikawa variety MTr is isomorphic to the

Coulomb branch of the 3D gauge theory associated with the star

shaped quiver with r -legs ([BFN]).

⇒ MTr has a finitely many symplectic leaves ([Weekes]).

11



Relation to Coulomb branches

We get:

MTr = Higgs(SG (P1 with r puctures)).

For type A,

Moore-Tachikawa variety MTr is isomorphic to the

Coulomb branch of the 3D gauge theory associated with the star

shaped quiver with r -legs ([BFN]).

⇒ MTr has a finitely many symplectic leaves ([Weekes]).

11



Relation to Coulomb branches

We get:

MTr = Higgs(SG (P1 with r puctures)).

For type A, Moore-Tachikawa variety MTr is isomorphic to the

Coulomb branch of the 3D gauge theory associated with the star

shaped quiver with r -legs ([BFN]).

⇒ MTr has a finitely many symplectic leaves ([Weekes]).

11



Relation to Coulomb branches

We get:

MTr = Higgs(SG (P1 with r puctures)).

For type A, Moore-Tachikawa variety MTr is isomorphic to the

Coulomb branch of the 3D gauge theory associated with the star

shaped quiver with r -legs ([BFN]).

⇒ MTr has a finitely many symplectic leaves ([Weekes]).

11



Beem-Peelaers-Rastelli-van Rees Conjecture

VOAs V(SG (Σ))

is called chiral algebras of class S
[Beem-Peelaers-Rastellib-van Rees’15]

[BPRvR] conjectured that chiral algebras of class S should be also

described in terms of 2D TQFT:

Want to:

• G ⇝ ĝ = g[t, t−1]⊕ CK (g = Lie(G ));

• symplectic variety X ⇝ a VOA V such that XV = X ;

• moment map µ : X → g∗ ⇝ homomorphism V k(g) → V such

that the induced morphism XV → XV k(g) = g∗ coincides with

µ;

• (X × Y )///∆(G ) ⇝ H∞/2+•(ĝ, g,V1 ⊗ V2)

(XH∞/2+•(ĝ,g,V1⊗V2)
∼= (XV1 × XV2)///∆(G ) in “nice” cases.)

The level of V1 ⊗ V2 must be −2h∨, i.e., k = −h∨.
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(XH∞/2+•(ĝ,g,V1⊗V2)
∼= (XV1 × XV2)///∆(G ) in “nice” cases.)

The level of V1 ⊗ V2 must be −2h∨, i.e., k = −h∨.

12



Beem-Peelaers-Rastelli-van Rees Conjecture

VOAs V(SG (Σ)) is called chiral algebras of class S
[Beem-Peelaers-Rastellib-van Rees’15]

[BPRvR] conjectured that chiral algebras of class S should be also

described in terms of 2D TQFT:

Want to:
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(XH∞/2+•(ĝ,g,V1⊗V2)
∼= (XV1 × XV2)///∆(G ) in “nice” cases.)

The level of V1 ⊗ V2 must be −2h∨, i.e., k = −h∨.

12



Beem-Peelaers-Rastelli-van Rees Conjecture

VOAs V(SG (Σ)) is called chiral algebras of class S
[Beem-Peelaers-Rastellib-van Rees’15]

[BPRvR] conjectured that chiral algebras of class S should be also

described in terms of 2D TQFT:

Want to:
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Beem-Peelaers-Rastelli-van Rees Conjecture

• MT2 = T ∗G ⇝

Dch
G ,−h∨ , (global) cdo on G

[Malikov-Schechtman-Vaintrob, Beilinson-Drinfeld] at the

critical level k = −h∨ (XDch
G ,k

∼= T ∗G );

• MT1 = G × S is obtained from MT2 = T ∗G by Kostant

reduction X 7→ X ×g∗ S.
MT1 ⇝ H0

DS(Dch
G ,−h∨)

( XH0
DS (D

ch
G ,−h∨ ) = T ∗G ×g∗ S = G × S)
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Chiral algebras of class S

Theorem (A., arXiv:1811.01577)

For each semisimple group G, there exists a unique family of VAs

{Vr | r ≥ 1} such that

1) ∃ a vertex algebra homomorphism V−h∨(g)⊗r → Vr and the

g[t]⊕r -action on Vr integrates to the action of
r︷ ︸︸ ︷

G [[t]]× · · · × G [[t]];

2) V2 = Dch
G ,−h∨ and V1 = H0

DS(Dch
G ,−h∨);

3) H∞/2+i (ĝ, g,Vr ⊗ Vs) ∼= δi ,0Vr+s−2 .
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Chiral algebras of class S

Theorem (Continued)

Moreover,

a) each Vr is simple

and conformal with central charge

dim(MTr )− 24(r − 2)(ρ|ρ∨) =
r dim g− (r − 2) rk g− 24(r − 2)(ρ|ρ∨);

b) For z1 . . . zr ∈ T r , trVr (q
L0z1 . . . zr ) =∑

λ∈P+

(
q⟨λ,ρ

∨⟩ ∏∞
j=1(1−qj )rk g∏

α∈∆+
(1−q⟨λ+ρ,α∨⟩)

)r−2∏r
i=1 trVλ

(q−Dzi ), where

Vλ = U(ĝ)⊗U(g[t]⊕CK) Eλ is the Weyl module at the critical

level;

c) XVr
∼= MTr .
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Beem-Rastelli conjecture for class S theory

According to [BPRvR] , Theorem (1)-(3) and (a)-(b) are the

properties that V(SG (P1 with r punctures)) should have

⇒ Vr = V(SG (P1 with r punctures)).

Moreover, by Theorem (c), we conclude that Beem-Rastelli

conjecture is true for the class S theory.
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Exmaples

We can in principle compute the chiral algebras of class S.

G = SL2

MT3 = C2 ⊗ C2 ⊗ C2, C2 ↶ SL2

V3 = βγ system associated to the symplectic vector space (C2)⊗3

(affinization of the Weyl algebra).

MT4 = Omin in D4

V4 = L−2(D4), the simple affine vertex algebra associated with D4

at level −2 (conjectured by [BL2PRvR]).

17



Exmaples

We can in principle compute the chiral algebras of class S.

G = SL2

MT3 = C2 ⊗ C2 ⊗ C2, C2 ↶ SL2

V3 = βγ system associated to the symplectic vector space (C2)⊗3

(affinization of the Weyl algebra).

MT4 = Omin in D4

V4 = L−2(D4), the simple affine vertex algebra associated with D4

at level −2 (conjectured by [BL2PRvR]).

17



Exmaples

We can in principle compute the chiral algebras of class S.

G = SL2

MT3

= C2 ⊗ C2 ⊗ C2, C2 ↶ SL2

V3 = βγ system associated to the symplectic vector space (C2)⊗3

(affinization of the Weyl algebra).

MT4 = Omin in D4

V4 = L−2(D4), the simple affine vertex algebra associated with D4

at level −2 (conjectured by [BL2PRvR]).

17



Exmaples

We can in principle compute the chiral algebras of class S.

G = SL2

MT3 = C2 ⊗ C2 ⊗ C2,

C2 ↶ SL2

V3 = βγ system associated to the symplectic vector space (C2)⊗3

(affinization of the Weyl algebra).

MT4 = Omin in D4

V4 = L−2(D4), the simple affine vertex algebra associated with D4

at level −2 (conjectured by [BL2PRvR]).

17



Exmaples

We can in principle compute the chiral algebras of class S.

G = SL2

MT3 = C2 ⊗ C2 ⊗ C2, C2 ↶ SL2

V3 = βγ system associated to the symplectic vector space (C2)⊗3

(affinization of the Weyl algebra).

MT4 = Omin in D4

V4 = L−2(D4), the simple affine vertex algebra associated with D4

at level −2 (conjectured by [BL2PRvR]).

17



Exmaples

We can in principle compute the chiral algebras of class S.

G = SL2

MT3 = C2 ⊗ C2 ⊗ C2, C2 ↶ SL2

V3 = βγ system associated to the symplectic vector space (C2)⊗3

(affinization of the Weyl algebra).

MT4 = Omin in D4

V4 = L−2(D4), the simple affine vertex algebra associated with D4

at level −2 (conjectured by [BL2PRvR]).

17



Exmaples

We can in principle compute the chiral algebras of class S.

G = SL2

MT3 = C2 ⊗ C2 ⊗ C2, C2 ↶ SL2

V3 = βγ system associated to the symplectic vector space (C2)⊗3

(affinization of the Weyl algebra).

MT4

= Omin in D4

V4 = L−2(D4), the simple affine vertex algebra associated with D4

at level −2 (conjectured by [BL2PRvR]).

17



Exmaples

We can in principle compute the chiral algebras of class S.

G = SL2

MT3 = C2 ⊗ C2 ⊗ C2, C2 ↶ SL2

V3 = βγ system associated to the symplectic vector space (C2)⊗3

(affinization of the Weyl algebra).

MT4 = Omin in D4

V4 = L−2(D4), the simple affine vertex algebra associated with D4

at level −2 (conjectured by [BL2PRvR]).

17



Exmaples

We can in principle compute the chiral algebras of class S.

G = SL2

MT3 = C2 ⊗ C2 ⊗ C2, C2 ↶ SL2

V3 = βγ system associated to the symplectic vector space (C2)⊗3

(affinization of the Weyl algebra).

MT4 = Omin in D4

V4 = L−2(D4), the simple affine vertex algebra associated with D4

at level −2 (conjectured by [BL2PRvR]).

17



Exmaples

We can in principle compute the chiral algebras of class S.

G = SL2

MT3 = C2 ⊗ C2 ⊗ C2, C2 ↶ SL2

V3 = βγ system associated to the symplectic vector space (C2)⊗3

(affinization of the Weyl algebra).

MT4 = Omin in D4

V4 = L−2(D4), the simple affine vertex algebra associated with D4

at level −2 (conjectured by [BL2PRvR]). 17



Examples (contined)

The isomorphism XL−2(D4)
∼= Omin reproves a result in

[A.-Moreau’16].

The associativities imply:

• ((C2)⊗3 × (C2)⊗3)/∆(SL2) ∼= Omin,

(ADHM construction of Omin)

• H∞/2+i (ŝl2, sl2, βγ((C2)⊗3)⊗ βγ((C2)⊗3) ∼= δi ,0L−2(D4)

Also, the MLDE method gives

trL−2(D4)(q
L0−c/24) =

E ′
4(τ)

240η(τ)10

([A.-Kawasetsu]).
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Examples (continued)

G = SL3

MT3 = Omin in E6.

V3 = L−3(E6).

In general, neither MTr nor Vr has a simple description.
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Some words on the proof

V2 = Dch
G ,−h∨ should satisfy

H∞/2+i (ĝ, g,Dch
G ,−h∨ ⊗ Vr ) ∼= Vr .

Why?

By definition,

Dch
G ,−h∨ -Mod ∼= DG((t)) -Mod−h∨

([Arkhipov-Gaitsgory]). Hence,

Dch
G ,−h∨ -ModG [[t]] ∼= DGrG -Mod−h∨ ,

where Dch
G ,−h∨ itself corresponds to the δ-function D-module δe at

the identity.

20
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Some words on the proof

By restricting this equivalence, we get

Dch
G ,−h∨ -ModG [[t]]×G [[t]] ∼= DGrG -Mod

G [[t]]
−h∨

∼= Rep(Ǧ ).

Via this equivalence the monodical structure of

Dch
G ,−h∨ -ModG [[t]]×G [[t]] is given by

M ⊗ N 7→ H∞/2+•(ĝ, g,M ⊗ N)

([Frenkel-Gaitsgory]). Because Dch
G ,−h∨ ↔ δe ↔ C,

H∞/2+•(ĝ, g,Dch
G ,−h∨ ⊗M) ∼= M,

and one can check this isomorphism holds for any ĝ-module M at

the critical level on which the g[t]-action integrates to the action

of G [[t]] ([Arkhipov-Gaitsgory]).
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the critical level on which the g[t]-action integrates to the action

of G [[t]] ([Arkhipov-Gaitsgory]).

21



Some words on the proof

By restricting this equivalence, we get

Dch
G ,−h∨ -ModG [[t]]×G [[t]] ∼= DGrG -Mod

G [[t]]
−h∨

∼= Rep(Ǧ ).
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Some words on the proof

V1 = H0
DS(Dch

G ,−h∨) should satisfy

H∞/2+i (ĝ, g,V1 ⊗ Vr ) ∼= δi ,0Vr−1.

Proposition

H∞/2+i (ĝ, g,V1 ⊗M) ∼= δi ,0H
0
DS(M).

⇒ Vr−1 = H0
DS(Vr ).

So it is enough to construct an inverse functor to H0
DS(?).

Equivalently, we want to recover everything from V1.
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Construction of Vr

Example:

V2 = Dch
G has two commuting action of ĝ at the critical level

V1 has one action of ĝ at the critical level

Easy guess: V2 = V1 ⊗ V1?

No, because the action of the two Feigin-Frenlel center on

V2 = Dch
G ,−h∨ is the same.

We can kill the difference of the two action of the center on

V1 ⊗ V1, or more generally, on V⊗r
1 , using a certain BRST

cohomology.
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V1 has one action of ĝ at the critical level
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Construction of Vr

z(ĝ): Feigin-Frenkel center of ĝ at the critical level generated by

p1(z), . . . , prk(g)(z).

Vr := H0
BRST (V

⊗r
1 ⊗ (⊗rk(g)

i=1 (bi , ci ))
⊗r−1,Q(0))

where

Q(z) =
r−1∑
i=1

Qi ,i+1(z),

Qi ,i+1(z) =

rk(g)∑
j=1

(πi (pj(z))− πi+1(pj(z)))c
(i)
j (z).

One can check that the above defined Vr satisfies the required

properties. .
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Thank you!
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