

$$
\begin{aligned}
\psi^{(a)}(z) \psi^{(b)}(w) & =\psi^{(b)}(w) \psi^{(a)}(z), \\
\psi^{(a)}(z) e^{(b)}(w) & \simeq \varphi^{b \neq a}(\Delta) e^{(b)}(w) \psi^{(a)}(z), \\
e^{(a)}(z) e^{(b)}(w) & \sim(-1)^{|a| b \mid} \varphi^{b \Rightarrow a}(\Delta) e^{(b)}(w) e^{(a)}(z), \\
\psi^{(a)}(z) f^{(b)}(w) & \simeq \varphi^{b \neq a}(\Delta)^{-1} f^{(b)}(w) \psi^{(a)}(z), \\
f^{(a)}(z) f^{(b)}(w) & \sim(-1)^{|a| b \mid} \varphi^{b \Rightarrow a}(\Delta)^{-1} f^{(b)}(w) f^{(a)}(z), \\
{\left[e^{(a)}(z), f^{(b)}(w)\right\} } & \sim-\delta^{a, b} \frac{\psi^{(a)}(z)-\psi^{(b)}(w)}{z-w},
\end{aligned}
$$

Quiver Yangians
 and Crystal Melting

Masahito Yamazaki
-

Berkeley String-Math seminar
October 26, 2020

Based on

$$
\begin{aligned}
& \text { Wei Li + MY } \\
& \quad(2003.08909 \text { [hep-th]) } \\
& \text { Dmitry Galakhov + MY } \\
& \text { (2008.07006 [hep-th]) }
\end{aligned}
$$

Many related papers, in particular
M. Rapcak, Y. Soibelman, Y. Yang, G. Zhao
(1810.10402, 2007.13365 [math.QA])

Also earlier works, e.g.
Hirosi Ooguri + MY (0811.2810 [hep-th])
MY (Ph.D. thesis, 1002.1709 [hep-th])
MY (Master thesis, 0803.4474 [hep-th])

Overview

Geometry
string theory
supersymmetric gauge theory

BPS states
Geometric
BPS degeneracy
Enumerative Invariants

Many papers, egg. [Nakajima, \cdots, Kontsevich-
Soibelman, Alday-Gaiotto-Tachikawa,
Schiffman-Vasserot, Maulik-Okounkov,…]
type IA string theory $R^{3,1} \times X$

$$
R \times\{\text { bol, cycle }\}
$$

BPS particles wrapping hel. cycle

$$
Z_{B P S}^{X}=\sum_{\gamma} \underbrace{\Omega_{\gamma}^{X}(\cdots) q^{\gamma} \quad \gamma \in H^{\text {even }}(X)}_{B P S \text { degeneracy }}
$$

toric $C Y_{3}: X$
type IIA string theory $R_{\cup}^{3,1} \times X$

$$
R \times\{\text { bol, cycle }\}
$$

BPS particles wrapping hel. cycle

$$
Z_{B P S}^{X}=\sum_{\gamma} \underbrace{\Omega_{\gamma}^{X}(\cdots) q^{\gamma} \quad \gamma \in H^{\text {even }}(X)}_{B P S \text { degeneracy }}
$$

$$
=Z_{\text {crystal }} \Leftarrow \text { fixed point }
$$

\downarrow
BPS quiver Yangian
tonic $\mathrm{CY}_{3}: X$
type IIA string theory $\quad R^{3,1} \times X$

$$
R \times\{\text { bol, cycle }\}
$$

BPS particles wrapping hel. cycle

Plan

- Crystal Melting
$\varepsilon^{[0 \text { oguri } i-Y]}$ $\leftarrow \underset{L}{[2 i-Y]}$
- Quiver Yangian: Representation
- Derivation from Quantum Mechanics
- Summary

$$
\begin{aligned}
& \text { T } \\
& {[\text { Galalkhev-Y] }}
\end{aligned}
$$

Crystal Melting

[Szendroi; Mozgovoy, Reineke; Nagao, Nakajima; Ooguri, MY; Jafferis, Chuang, Moore; Sulkowski; Aganagic, Vafa; …]

plane partition

$$
\begin{aligned}
& M(q) \equiv \sum_{\Lambda \in \text { plane partition }} q^{|\Lambda|}=\prod_{k=1}^{\infty} \frac{1}{\left(1-q^{k}\right)^{k}} \\
&=1+q+3 q^{2}+6 q^{3}+13 q^{4}+24 q^{5}+48 q^{6}+\ldots \\
&=\not \subset \mathbb{T}^{3} \\
& \text { top A-model }
\end{aligned}
$$

crystal melting

ideal sheaf

$$
\begin{gathered}
I_{\Lambda} \subset \mathbb{C}[x, y, z] \\
\operatorname{Span}\left\{x^{i} y^{j} z^{k} \mid(i, j, k) \notin \Lambda\right\} \\
x \cdot I_{\wedge}, y \cdot I_{\wedge}, z \cdot I_{\Lambda} \subset I_{\Lambda}
\end{gathered}
$$

melting rule

$$
\begin{gathered}
(i+1, j, k) \text { or }(i, j+1, k) \text { or }(i, j, k+1) \in \Lambda \\
\sim(i, j, k) \in \Lambda
\end{gathered}
$$

The story generalizes to

 an arbitrary toric CY3toric diagram $\binom{$ SPP }{$x y=z w^{2}}$

2D projection
3D crystal

2D projection of the crystal is a tesselation of the periodic quiver on T^{2} studied by [Hanany et al.]

 quiver quiver superpotential
vertex arrow W W

Superpotential / F-term relations

$$
\begin{gathered}
W=\operatorname{Tr}\left(\Phi_{b a} \Phi_{a c} \Phi_{c b}-\Phi_{b a} \Phi_{a d} \Phi_{d e} \Phi_{e b}\right) \\
\partial W / \partial \Phi_{b a}=\Phi_{a c} \Phi_{c b}-\Phi_{a d} \Phi_{d e} \Phi_{e b}=0 \\
\end{gathered}
$$

$\mathbb{C} Q /(2 W)$: path algebra (non-commutative in general)

We can lift the 2D projection of the crystal into 3D by keeping track of "depth"
 of the form (minimal both) $($ loop $)$
 $\bmod F$-term rel.
melting rule:
$\square \in \mathrm{K}$ whenever there exists an edge $I \in Q_{1}$ such that $I \cdot \square \in \mathrm{~K}$

Infinite-product forms discussed in [Szendroi, Young, Nagao, Aganagic-Ooguri-Vafa-MY]

$$
\begin{aligned}
& \left(\mathbb{C}^{2} / \mathbb{Z}_{3}\right) \times \mathbb{C} \\
& \text { Costs) } \\
& Z \sim \prod_{n} \frac{1}{1-\delta^{n} Q_{1}} \frac{1}{1-\gamma^{n} Q_{2}} \frac{1}{1-q^{n} Q_{1} Q_{2}} \\
& \left(\begin{array}{cc}
n \delta+\alpha_{1}, & n \delta+\alpha_{2},
\end{array} n \delta+\alpha_{1}+\alpha_{2}\right) \\
& \text { conifold } \\
& Z \sim \prod_{n}\left(1-\delta^{n} Q\right) \quad\binom{n \delta+\alpha}{0 d d} \\
& \text { SPP } \\
& Z \sim \prod_{n}\left(1-q^{n} Q_{1}\right)\left(1-\delta^{n} Q_{1} Q_{2}\right) \frac{1}{1-8^{n} Q_{2}} \\
& \left(\begin{array}{ccc}
n \delta+\alpha_{1}, & n \delta+\alpha_{2}, & n \delta+\alpha_{1}+\alpha_{2} \\
o d d & \text { even } & o d d
\end{array}\right)
\end{aligned}
$$

[Nagao-MY] discussed chamber structures in terms of affine Weyl groups] Lie superalgebra?

Circa 2009-2010

Elliptic !!

Quantum toroidal !!

Later important developments on quantum toroidal algebras (Ding-lohara-Miki) and affine Yangians by
[B. Feigin, E. Feigin, Jimbo, Miwa, Mukhin; Tsymbaulik; Prochazka, ...]
which in particular constructed representations on plane partitions.

Affine Yangians also appear in higher spin algebras [Gaberdiel, Gopakumar; Li, Peng, $\cdot \cdots]$

Quiver Yangian

: Algebra

[Li-MY '20]
A. equivariant parameters

loop constraint: $\quad \sum_{I \in L} h_{I}=0$,
A. equivariant parameters

$\mathbb{C}^{2} / z_{n} \times \mathbb{C}$

loop constraint: $\quad \sum_{I \in L} h_{I}=0$,
 +
vertex constraint: $\quad \sum_{I \in a} \operatorname{sign}_{a}(I) h_{I}=0$

(2t) coordinate of $2 \rightarrow$ projection
B. Chevally-type generators (zispectrol ponarreter)
$e^{(a)}(z) \equiv \sum_{n=0}^{+\infty} \frac{e_{n}^{(a)}}{z^{n+1}}, \quad \psi^{(a)}(z) \equiv \sum_{n=-\infty}^{+\infty} \frac{\psi_{n}^{(a)}}{z^{n+1}}, \quad f^{(a)}(z) \equiv \sum_{n=0}^{+\infty} \frac{f_{n}^{(a)}}{z^{n+1}}$,
$e^{(a)}(u)$: creation,$\quad \psi^{(a)}(u)$: charge,$\quad f^{(a)}(u)$: annihilation

Z2-grading (super algebra)

$$
|a|= \begin{cases}0 & \left(\exists I \in Q_{1} \text { such that } s(I)=t(I)=a\right), \\ 1 & \text { (otherwise) },\end{cases}
$$

odd

C. "OPE relations"

$$
\begin{aligned}
\psi^{(a)}(z) \psi^{(b)}(w) & =\psi^{(b)}(w) \psi^{(a)}(z) \\
\psi^{(a)}(z) e^{(b)}(w) & \simeq \varphi^{b \Rightarrow a}(\Delta) e^{(b)}(w) \psi^{(a)}(z), \\
e^{(a)}(z) e^{(b)}(w) & \sim(-1)^{|a||b|} \varphi^{b \Rightarrow a}(\Delta) e^{(b)}(w) e^{(a)}(z), \\
\psi^{(a)}(z) f^{(b)}(w) & \simeq \varphi^{b \Rightarrow a}(\Delta)^{-1} f^{(b)}(w) \psi^{(a)}(z), \\
f^{(a)}(z) f^{(b)}(w) & \sim(-1)^{|a||b|} \varphi^{b \Rightarrow a}(\Delta)^{-1} f^{(b)}(w) f^{(a)}(z), \\
{\left[e^{(a)}(z), f^{(b)}(w)\right\} } & \sim-\delta^{a, b} \frac{\psi^{(a)}(z)-\psi^{(b)}(w)}{z-w},
\end{aligned}
$$

" \simeq " means equality up to $z^{n} w^{m \geq 0}$ terms
" \sim " means equality up to $z^{n \geq 0} w^{m}$ and $z^{n} w^{m \geq 0}$ terms

$$
\varphi^{a \Rightarrow b}(u) \equiv \frac{\prod_{I \in\{b \rightarrow a\}}\left(u+h_{I}\right)}{\prod_{I \in\{a \rightarrow b\}}\left(u-h_{I}\right)}
$$

$$
\begin{aligned}
\psi^{(a)}(z) \psi^{(b)}(w) & =\psi^{(b)}(w) \psi^{(a)}(z) \\
\psi^{(a)}(z) e^{(b)}(w) & \simeq \varphi^{b \Rightarrow a}(\Delta) e^{(b)}(w) \psi^{(a)}(z) \\
e^{(a)}(z) e^{(b)}(w) & \sim(-1)^{|a||b|} \varphi^{b \Rightarrow a}(\Delta) e^{(b)}(w) e^{(a)}(z) \\
\psi^{(a)}(z) f^{(b)}(w) & \simeq \varphi^{b \Rightarrow a}(\Delta)^{-1} f^{(b)}(w) \psi^{(a)}(z) \\
f^{(a)}(z) f^{(b)}(w) & \sim(-1)^{|a||b|} \varphi^{b \Rightarrow a}(\Delta)^{-1} f^{(b)}(w) f^{(a)}(z) \\
{\left[e^{(a)}(z), f^{(b)}(w)\right\} } & \sim-\delta^{a, b} \frac{\psi^{(a)}(z)-\psi^{(b)}(w)}{z-w}
\end{aligned}
$$

when expanded in terms of modes,

$$
\begin{aligned}
& {\left[\psi_{n}^{(a)}, \psi_{m}^{(b)}\right]=0,} \\
& \sum_{k=0}^{|b \rightarrow a|}(-1)^{|b \rightarrow a|-k} \sigma_{|b \rightarrow a|-k}^{b \rightarrow a}\left[\psi_{n}^{(a)} e_{m}^{(b)}\right]_{k}=\sum_{k=0}^{|a \rightarrow b|} \sigma_{|a \rightarrow b|-k}^{a \rightarrow b}\left[e_{m}^{(b)} \psi_{n}^{(a)}\right]^{k}, \\
& \sum_{k=0}^{|b \rightarrow a|}(-1)^{|b \rightarrow a|-k} \sigma_{|b \rightarrow a|-k}^{b \rightarrow a}\left[e_{n}^{(a)} e_{m}^{(b)}\right]_{k}=(-1)^{|a||b|} \sum_{k=0}^{|a \rightarrow b|} \sigma_{|a \rightarrow b|-k}^{a \rightarrow b}\left[e_{m}^{(b)} e_{n}^{(a)}\right]^{k}, \\
& \sum_{k=0}^{|a \rightarrow b|} \sigma_{|a \rightarrow b|-k}^{a \rightarrow b}\left[\psi_{n}^{(a)} f_{m}^{(b)}\right]_{k}=\sum_{k=0}^{|b \rightarrow a|}(-1)^{|b \rightarrow a|-k} \sigma_{|b \rightarrow a|-k}^{b \rightarrow a}\left[f_{m}^{(b)} \psi_{n}^{(a)}\right]^{k}, \\
& \sum_{k=0}^{|a \rightarrow b|} \sigma_{|a \rightarrow b|-k}^{a \rightarrow b}\left[f_{n}^{(a)} f_{m}^{(b)}\right]_{k}=(-1)^{|a||b|} \sum_{k=0}^{|b \rightarrow a|}(-1)^{|b \rightarrow a|-k} \sigma_{|b \rightarrow a|-k}^{b \rightarrow a}\left[f_{m}^{(b)} f_{n}^{(a)}\right]^{k}, \\
& {\left[e_{n}^{(a)}, f_{m}^{(b)}\right\}=\delta^{a, b} \psi_{n+m}^{(a)},} \\
& \prod_{I \in\{a \rightarrow b\}}\left(z-w+h_{I}\right)=\sum_{k=0}^{\mid u \rightarrow v_{\mid}} \sigma_{|a \rightarrow b|-k}^{a \rightarrow b}(z-w)^{k}, \\
& {\left[A_{n} B_{m}\right]_{k} \equiv \sum_{j=0}^{k}(-1)^{j}\binom{k}{j} A_{n+k-j} B_{m+j},} \\
& \prod_{I \in\{b \rightarrow a\}}\left(z-w-h_{I}\right)=\sum_{k=0}^{|b \rightarrow a|}(-1)^{|b \rightarrow a|-k} \sigma_{|b \rightarrow a|-k}^{b \rightarrow a}(z-w)^{k}, \\
& {\left[B_{m} A_{n}\right]^{k} \equiv \sum_{j=0}^{k}(-1)^{j}\binom{k}{j} B_{m+j} A_{n+k-j} .}
\end{aligned}
$$

Example

OPE relation

$$
\begin{aligned}
\psi(z) \psi(w) & \sim \psi(w) \psi(z) \\
\psi(z) e(w) & \sim \varphi_{3}(\Delta) e(w) \psi(z) \\
\psi(z) f(w) & \sim \varphi_{3}^{-1}(\Delta) f(w) \psi(z) \\
e(z) e(w) & \sim \varphi_{3}(\Delta) e(w) e(z) \\
f(z) f(w) & \sim \varphi_{3}^{-1}(\Delta) f(w) f(z), \\
{[e(z), f(w)] } & \sim-\frac{1}{\sigma_{3}} \frac{\psi(z)-\psi(w)}{z-w},
\end{aligned}
$$

$$
\varphi_{3}(z) \equiv \frac{\left(z+h_{1}\right)\left(z+h_{2}\right)\left(z+h_{3}\right)}{\left(z-h_{1}\right)\left(z-h_{2}\right)\left(z-h_{3}\right)} .
$$

$$
h_{1}+h_{2}+h_{3}=0,
$$

$$
\sigma_{3} \equiv h_{1} h_{2} h_{3} .
$$

Serre relation

$$
\begin{aligned}
& \operatorname{Sym}_{z_{1}, z_{2}, z_{3}}\left(z_{2}-z_{3}\right)\left[e\left(z_{1}\right),\left[e\left(z_{2}\right), e\left(z_{3}\right)\right]\right]=0 ; \\
& \operatorname{Sym}_{z_{1}, z_{2}, z_{3}}\left(z_{2}-z_{3}\right)\left[f\left(z_{1}\right),\left[f\left(z_{2}\right), f\left(z_{3}\right)\right]\right]=0 .
\end{aligned}
$$

This gives

$$
\begin{aligned}
& Y\left(\hat{g} \hat{g}_{1}\right): \\
& 1 s \\
& U\left(W_{1+\infty}\right)
\end{aligned}
$$

$$
Y\left(\hat{g}_{1}\right) \text { : affine Yongian }
$$

[Schiffmann-Vasserot; Tsymbaulik; Prochazka; Gaberdiel-Gopakumar-Li-Peng,...]

* $\left(\mathbb{C}^{2} / \mathbb{W}_{2}\right) \times \mathbb{C} \leadsto Y\left(\hat{g l_{2}}\right)$

* conifold $\leadsto Y\left(\hat{g l}_{1} \mid 1\right)$

* more generally,

$$
x y=z^{n} \omega^{m} \leadsto Y\left(\hat{g} \ell_{m / n}\right) \quad \text { [Rapcak; Bezerra-Mukhin] }
$$

Some Properties of Quiver Yangians [Li-MY]
a. triangular decomposition

$$
\begin{array}{rlrl}
\mathrm{Y}_{(Q, W)}= & \mathrm{Y}_{(Q, W)}^{+} \oplus \mathrm{B}_{(Q, W)} \oplus \mathrm{Y}_{(Q, W)}^{-}, & e^{(a)}(z) \leftrightarrow f^{(a)}(z), & \psi^{(a)}(z) \leftrightarrow \psi^{(a)}(z)^{-1}, \\
& \left\{e_{a}\right\}\left\{\psi_{a}\right\}\left\{f_{a}\right\} & \text { onden } 2 \text { involution }
\end{array}
$$

b. grading

$$
\operatorname{deg}_{a}\left(e_{n}^{(b)}\right)=\delta_{a, b}, \quad \operatorname{deg}_{a}\left(\psi_{n}^{(b)}\right)=0, \quad \operatorname{deg}_{a}\left(f_{n}^{(b)}\right)=-\delta_{a, b} .
$$

$\operatorname{deg}_{\text {level }}\left(e_{n}^{(b)}\right)=\operatorname{deg}_{\text {level }}\left(f_{n}^{(b)}\right)=n+\frac{1}{2}, \quad \operatorname{deg}_{\text {level }}\left(\psi_{n}^{(b)}\right)=n+1,6 \operatorname{grading}$ when $\operatorname{deg}\left(h_{z}\right)=1$
C. spectral shift $\quad e^{(a)}(z) \equiv \sum_{n=0}^{+\infty} \frac{e_{n}^{(a)}}{z^{n+1}}, \quad \psi^{(a)}(z) \equiv \sum_{n=-\infty}^{+\infty} \frac{\psi_{n}^{(a)}}{z^{n+1}}, \quad f^{(a)}(z) \equiv \sum_{n=0}^{+\infty} \frac{f_{n}^{(a)}}{z^{n+1}}$,
$z \rightarrow z-q$ causes

$$
\begin{aligned}
& e_{l}^{\prime}=\sum_{k=0}^{l}\binom{l}{k} \varepsilon^{k} e_{l-k}, \quad f_{l}^{\prime}=\sum_{k=0}^{l}\binom{l}{k} \varepsilon^{k} f_{l-k}, \quad \psi_{l}^{\prime}=\sum_{k=0}^{l}\binom{l}{k} \varepsilon^{k} \psi_{l-k} \quad(l=0,1, \ldots), \\
& \psi_{-l-1}^{\prime}=\sum_{k=l}^{\infty}\binom{k}{l}(-\varepsilon)^{k-l} \psi_{-k-1} \quad(l=0,1, \ldots,) .
\end{aligned}
$$

Some Properties of Quiver Yangians [Li-MY]
d. gauge shift

$$
\begin{aligned}
& h_{I} \rightarrow h_{I}^{\prime}=h_{I}+\varepsilon_{a} \operatorname{sign}_{a}(I), \quad \operatorname{sign}_{a}(I) \equiv\left\{\begin{array}{lll}
+1 & (s(I)=a, & t(I) \neq a), \\
-1 & (s(I) \neq a, & t(I)=a), \\
0 & (\text { otherwise }),
\end{array}\right. \\
& \text { consistent with loop constraint: } \quad \sum_{I \in L} h_{I}=0, \\
& \varphi^{a \Rightarrow b}(u) \rightarrow \varphi^{a \Rightarrow b \prime}(u)=\frac{\prod_{I \in\{b \rightarrow a\}}\left(u+h_{I}+\varepsilon_{a} \operatorname{sign}_{a}(I)\right)}{\prod_{I \in\{a \rightarrow b\}}\left(u-h_{I}-\varepsilon_{a} \operatorname{sign}_{a}(I)\right)} \quad \begin{array}{l}
\text { parameters }
\end{array} \\
& \text { which reshuffles generators } \quad e_{m}^{a} \text { mixes ml } e_{n}^{a} \\
& \text { (nim) }
\end{aligned}
$$

To eliminate this ambiguity,

$$
\text { vertex constraint: } \quad \sum_{I \in a} \operatorname{sign}_{a}(I) h_{I}=0
$$

Quiver Yangian :

Representation

Representation by crystal melting [Li-MY '20], inspired by [FFJMM] and [Prochazka]

In fact, we can "bootstrap" the algebra from this Ansatz

Crucial ingredient: poles keep track of the crystal structure

$$
\Psi_{\Lambda}(z)=\psi_{0}(z)=\frac{z+C^{C^{2}}}{z} \begin{array}{|c}
\sum_{0}^{a}: \text { centerol element } \\
\end{array}
$$

$$
\begin{aligned}
\Psi_{\Lambda}(z) & =\psi_{0}(z) \psi_{\square_{0}}(z) \\
& =\frac{z+C}{z} \cdot \frac{\left(z+h_{1}\right)\left(z+h_{2}\right)\left(z+h_{3}\right)}{\left(z-h_{1}\right)\left(z-h_{2}\right)\left(z-h_{3}\right)}
\end{aligned}
$$

$h_{1}+h_{3}$

$2 h_{1}$

$$
\begin{aligned}
\Psi_{\Lambda}(z) & =\psi_{0}(z) \psi_{\square_{0}}(z) \psi_{\square_{1}}(z) \\
& =\frac{z+C}{z} \cdot \frac{\left(z+h_{1}\right)\left(z+h_{2}\right)\left(z+h_{3}\right)}{\left(z-h_{1}\right)\left(z-h_{2}\right)\left(z-h_{3}\right)} \cdot \frac{z\left(z+h_{2}-h_{1}\right)\left(z+h_{3}-h_{1}\right)}{\left(z-2 h_{1}\right)\left(z-h_{2}-h_{1}\right)\left(z-h_{3}-h_{1}\right)}
\end{aligned}
$$

$\left(h_{1}+h_{2}+h_{3}=0\right)$
$\Psi_{\Lambda}(z)=\psi_{0}(z) \psi_{\square_{0}}(z) \psi_{\square_{1}}(z)$

$$
=\frac{z+C}{z} \cdot \frac{\left(z+h_{1}\right)\left(\left(z+h_{2}\right)\left(z+h_{3}\right)\right.}{\left(z-h_{1}\right)\left(z-h_{2}\right)\left(z-h_{3}\right)} \cdot \frac{z\left(z+h_{2}-h_{1}\right)\left(z+h_{3}-h_{1}\right)}{\left(z-2 h_{1}\right)\left(z-h_{2}-h_{1}\right)\left(z-h_{3}-h_{1}\right)}
$$

In general, loop constraint ensures that poles are in correct positions as dictated by the melting rule of the crystal

Truncations and D4-branes

For non-generic equivariant parameters, we have null states, so that the crystal truncates at the "pit"

pit: location of null store

$$
N_{1} h_{1}+N_{2} h_{2}+N_{3} h_{3}+C=0
$$

There is a corresponding truncation of the algebra studied by [Gaiotto-Rapcak] (also [Bershtein, Feigin, Merzon])

$$
Y\left(\hat{g}_{1}\right) \rightarrow Y_{N_{1}, N_{2}, N_{3}}
$$

Physically: D4-branes

Generalization?

null state happens at

$$
\sum_{I} M_{I} h_{I}+C=0
$$

Which combination? $\quad\left\{M_{I}\right\} \leftrightarrow\left\{N_{\alpha}\right\}$
Answer given by perfect matchings [Li-MY]

Bipartite graph (brane tiling): dual of periodic quiver

Perfect matching specifies which edges should be "eliminated"

$$
\begin{gathered}
\sum_{p} N_{p}\left(\sum_{I \in \underset{\sim}{D}}^{\uparrow} h_{I}\right)+C=0 \\
\text { perfect motching }
\end{gathered}
$$

flavor brane

D4-brane $=$ flavor brane, with extra superpotential

$$
W=\tilde{q} \Phi_{I} q \cdot \quad \Phi_{I}=\prod_{p \ni I} \tilde{\Phi}_{p} \cdot\left(\begin{array}{cc}
-\neq Y \text {-Term relation } \\
\partial W=0 \text { solved } \\
\text { in terms of } \underset{\Phi_{p}}{ }
\end{array}\right)
$$

This describes the divisor, $\Phi_{I}=0$ represented by regions filled by D4-branes [Imamura-Kimura-Y]

Derivation from

Quantum Mechanics

[Galakhov-MY]
tonic $\mathrm{CY}_{3}: X$
type IIA string theory $\quad R^{3,1} \times X$

$$
R \times\{\text { bol, cycle }\}
$$

BPS particles wrapping hel. cycle

Step 1: SQM and its equivariant cohomology
vect mull at vertex
We have the vacuum moduli space from supersymmetric quiver quantum mechanics (e.g. [Denef])
$\left(A_{\mu}, X_{v}^{3}, \Phi_{\nu}\right)$

$$
X_{v}^{3} \in \mathfrak{u}\left(n_{v}\right), \Phi_{v} \in \mathfrak{g l}\left(n_{v}, \mathbb{C}\right), X_{v}^{1}+i X_{v}^{2}
$$

$\mathcal{M}_{\mathrm{SQM}}$:

$$
q_{(a: v \rightarrow w)} \in \operatorname{Hom}\left(\mathbb{C}^{n_{v}}, \mathbb{C}^{n_{w}}\right),
$$

BPS Hilbert space [Witten]: $\mathcal{H}_{\mathrm{BPS}} \cong H_{\hat{G}}^{*}\left(\bar{Q}_{\dot{1}}\right)$.
Supercharge [Galakhov-MY]

$$
\begin{aligned}
& \bar{Q}_{i}=e^{-\mathfrak{H}}\left(d_{X^{3}}+\bar{\partial}_{\Phi, q}+\iota_{V}+d W \wedge\right) e^{\mathfrak{H}} \\
& \mathfrak{H}:=\sum_{v \in \mathcal{V}} \operatorname{Tr} X_{v}^{3}\left(\frac{1}{2}\left[\Phi_{v}, \bar{\Phi}_{v}\right]-\mu_{\mathbb{R}, v}\right) \\
& V=\sum_{(a: v \rightarrow w) \in \mathcal{A}}\left(\Phi_{w} q_{a}-q_{a} \Phi_{v}\right) \frac{\partial}{\partial q_{a}}, \\
& \mu_{\mathbb{R}, v}:=\theta_{v} \mathbb{R}_{n} \times n_{v}-\sum_{x \in \mathcal{V}} \sum_{(a: v \rightarrow x) \in \mathcal{A}} q_{a} q_{a}^{\dagger}+\sum_{y \in \mathcal{V}} \sum_{(b: y \rightarrow v) \in \mathcal{A}} q_{b}^{\dagger} q_{b} \\
& \text { stability pram. }
\end{aligned}
$$

Step 2: Omega-deformation

We introduce Omega-deformation [Nekrasov, $\cdot \cdots$]
to "smooth out" the singular geometry

$$
\begin{aligned}
& V:=\sum_{(a: v \rightarrow w) \in \mathcal{A}}\left(\Phi_{w} q_{a}-q_{a} \Phi_{v}\right) \frac{\partial}{\partial q_{a}}, \\
& V\left(q_{a}\right)=\sum_{(a: v \rightarrow w) \in \mathcal{A}}\left(\Phi_{w} q_{a}-q_{a} \Phi_{v}-\epsilon_{a} q_{a}\right) \frac{\partial}{\partial q_{a}} . \\
& \bar{Q}_{\mathrm{i}}^{2}=-4 \sum_{a \in \mathcal{A}} \epsilon_{a} \operatorname{Tr}\left(q_{a} \frac{\partial}{\partial q_{a}}\right) W=0 .
\end{aligned}
$$

The equivariant parameters should be consistent with W (loop constraint), and hence can be identified with h_{I} introduced previously

$$
\text { loop constraint: } \quad \sum_{I \in L} h_{I}=0
$$

Step 3: Higgs branch localization

1-parameter deformation of supercharge

$$
\begin{gathered}
\bar{Q}_{\mathrm{i}}^{(\mathbf{s})}=e^{-\mathbf{s} \mathfrak{H}}\left(d_{X^{3}}+\bar{\partial}_{\Phi, q}+\iota_{\mathbf{s} V}+\mathbf{s} d W \wedge\right) e^{\mathbf{s f}} . \\
X_{i}=\left\langle x_{i}\right\rangle+\mathbf{s}^{-\frac{1}{2}} x_{i} .
\end{gathered}
$$

$$
H=\mathrm{s} H_{0}+O\left(\mathrm{~s}^{\frac{1}{2}}\right), \quad \bar{Q}_{\mathrm{i}}^{(s)}=\mathrm{s}^{\frac{1}{2}} \bar{Q}_{\mathrm{i}}^{(0)}+\bar{Q}_{\mathrm{i}}^{(1)}+O\left(\mathrm{~s}^{-\frac{1}{2}}\right) .
$$

$$
H_{0} \sim \sum_{i}\left(-\partial_{x_{i}}^{2}+\omega_{i}^{2} x_{i}^{2}\right)+\sum_{i} \omega_{i}\left(\psi_{i} \psi_{i}^{\dagger}-\psi_{i}^{\dagger} \psi_{i}\right), \quad \bar{Q}_{1}^{(0)} \sim \sum_{i} \psi_{i}\left(\partial_{x_{i}}+\omega_{i} x_{i}\right) .
$$

Wilsonian decomposition of wave function

$$
\begin{gathered}
\Psi=\Psi_{|\omega|<\Lambda_{\mathrm{cf}}}\left(x_{|\omega|<\Lambda_{\mathrm{cf}}}\right) \Psi_{|\omega|>\Lambda_{\mathrm{cf}}}\left(x_{|\omega|<\Lambda_{\mathrm{cf}}}, x_{|\omega|>\Lambda_{\mathrm{cf}}}\right)+O\left(\mathrm{~s}^{-1}\right) . \\
\left(\bar{Q}_{\dot{1}}^{(0)}\right)^{\dagger} \Psi_{|\omega|>\Lambda_{\mathrm{cf}}}=\bar{Q}_{\dot{1}}^{(0)} \Psi_{|\omega|>\Lambda_{\mathrm{cf}}}=0 . \\
Q_{\mathrm{eff}}^{\dagger} \Psi_{|\omega|<\Lambda_{\mathrm{cf}}}=0, \quad Q_{\mathrm{eff}}^{\dagger}:=\left\langle\Psi_{|\omega|>\Lambda_{\mathrm{cf}}}\right| \bar{Q}_{\dot{1}}^{(1)}\left|\Psi_{\left.|\omega|>\Lambda_{\mathrm{cf}}\right\rangle}\right\rangle .
\end{gathered}
$$

Choose a basis such that the gauge action V is diagonal:

$$
V=\sum_{i} w_{i} m_{i} \frac{\partial}{\partial m_{i}},
$$

We can then solve for the effective wavefunction as

$$
\begin{aligned}
& Q_{\mathrm{eff}} \Psi_{\Lambda}=Q_{\mathrm{eff}}^{\dagger} \Psi_{\Lambda}=0 . \quad Q_{\mathrm{eff}}^{\dagger}=\sum_{i}\left(d \bar{m}_{i} \partial_{\bar{m}_{i}}+w_{i} m_{i} \iota_{\partial / \partial_{m_{i}}}\right) . \\
& \Psi_{\Lambda}=\left(\prod_{i}\left(w_{i}-\left|w_{i}\right| \bar{\psi}_{i, i} \psi_{2, i}\right) e^{-\left|w_{i}\right|\left|m_{i}\right|^{2}}\right) \prod_{i} \bar{\psi}_{\dot{2}, i}|0\rangle . \\
& \quad=\left(\prod_{i} w_{i}\right) \prod_{i} \bar{\psi}_{2, i}|0\rangle+\left(Q_{\mathrm{eff}}^{\dagger}-\text { exact term }\right) .
\end{aligned}
$$

to find the Euler class

$$
\Psi_{\Lambda} \sim \operatorname{Eul}_{\Lambda}:=\prod w_{i}
$$

$$
\int \Psi_{\Lambda}=1, \quad \int \Psi_{\Lambda} \wedge \Psi_{\Lambda^{\prime}}=\operatorname{Eul}_{\Lambda} \delta_{\Lambda, \Lambda^{\prime}}
$$

Step 4: Hecke modification

Raising/lowering operators of the algebra obtained by "Hecke modification" $\hat{e} \hat{廾}$ shifting the dimension vectors at the quiver nodes:

$$
\begin{equation*}
n_{v}^{\prime}=n_{v} \pm 1, \quad \text { and } \quad n_{w}^{\prime}=n_{w}, \text { for } w \neq v \tag{v}
\end{equation*}
$$

Define generators

$$
\begin{aligned}
\hat{e}^{(v)}(z) & :=\left[\operatorname{Tr}\left(z-\Phi_{v}\right)^{-1}, \hat{\mathbf{e}}\right] \\
\hat{f}^{(v)}(z) & :=-\left[\operatorname{Tr}\left(z-\Phi_{v}\right)^{-1}, \hat{\mathbf{f}}\right] .
\end{aligned}
$$

and its action on crystal configurations is

$$
\begin{aligned}
& \hat{e}^{(v)}(z)|\Lambda\rangle=\sum_{\substack{\square \in \Lambda^{+} \\
\emptyset=v}} \frac{1}{z-\phi_{\square}} \times \hat{E}(\Lambda \rightarrow \Lambda+\square)|\Lambda+\square\rangle, \\
& \hat{f}^{(v)}(z)|\Lambda\rangle=\sum_{\substack{\square \in \Lambda^{-} \\
\square=v}} \frac{1}{z-\phi_{\square}} \times \hat{F}(\Lambda \rightarrow \Lambda-\square)|\Lambda-\square\rangle . \\
& \hat{\psi}^{(v)}(z)|\Lambda\rangle=\hat{\psi}_{\Lambda}^{(v)}(z) \times|\Lambda\rangle . \\
& \text { Need } \\
& \hat{E}(\Lambda \rightarrow \Lambda+\square):=\frac{\left\langle\Psi_{\Lambda+\square}\right| \hat{\mathbf{e}}\left|\Psi_{\Lambda}\right\rangle}{\left\langle\Psi_{\Lambda+\square} \mid \Psi_{\Lambda+\square}\right\rangle} \\
& \hat{F}(\Lambda \rightarrow \Lambda-\square):=\frac{\left\langle\Psi_{\Lambda-\square}\right| \hat{\mathbf{f}}\left|\Psi_{\Lambda}\right\rangle}{\left\langle\Psi_{\Lambda-\square} \mid \Psi_{\Lambda-\square}\right\rangle}
\end{aligned}
$$

The correct formula:

$$
\begin{aligned}
\hat{\mathbf{e}} \Psi_{\Lambda} & =\sum_{\square \in \Lambda^{+}} \frac{\operatorname{Eul}_{\Lambda}}{\operatorname{Eul}_{\Lambda, \Lambda+\square}} \Psi_{\Lambda+\square} . \\
\hat{\mathbf{f}} \Psi_{\Lambda} & =\sum_{\square \in \Lambda^{-}} \frac{\operatorname{Eul}_{\Lambda}}{\operatorname{Eul}_{\Lambda-\square, \Lambda}} \Psi_{\Lambda-\square} .
\end{aligned}
$$

$$
\begin{aligned}
& \mu_{\Sigma} \times \mu_{\Sigma+\square} \\
& I_{1} \supset I_{2}
\end{aligned}
$$

Mathematically, this is derived by the Fourier-Mukai transform with the incident locus as a kernel [Nakajima,‥]

Physically, we need to bring in particles from infinity. Along the process Some low-frequency modes get exchanged with high-frequency modes

Highly non-trivial cancellations!

For example, for one of the Serre relations of $Y\left(\widehat{\mathfrak{g}}_{3 \mid 1}\right)$

$$
\operatorname{Sym}_{z_{1}, z_{2}}\left[e^{(2)}\left(z_{1}\right),\left[e^{(3)}\left(w_{1}\right),\left[e^{(2)}\left(z_{2}\right), e^{(1)}\left(w_{2}\right)\right\}\right\}\right\}
$$

$$
\begin{aligned}
& A_{2}:=\operatorname{Res}_{z_{1}, z_{2}, w_{1}, w_{2}}\langle\Lambda| A_{1}\left|\Lambda_{0}\right\rangle= \\
& =[1,2,4,3]+[1,3,4,2]-[2,1,3,4]+[2,1,4,3]-[2,3,1,4]+[2,4,1,3]+ \\
& +[2,4,3,1]-[3,1,2,4]+[3,1,4,2]-[3,2,1,4]+[3,4,1,2]+[3,4,2,1]- \\
& -[4,1,2,3]-[4,1,3,2]-[4,2,1,3]-[4,3,1,2]=0 \text { । } \\
& {[2,4,1,3]=-\frac{1}{48}, \quad[4,2,1,3]=-\frac{1}{96}, \quad[2,1,4,3]=-\frac{1}{48}, \quad[1,2,4,3]=\frac{1}{32},} \\
& {[4,1,2,3]=\frac{1}{64}, \quad[1,4,2,3]=\frac{1}{64}, \quad[4,1,3,2]=-\frac{1}{64}, \quad[1,4,3,2]=-\frac{1}{64},} \\
& {[2,4,3,1]=\frac{2 \hbar_{1}+\hbar_{2}}{24\left(4 \hbar_{1}+\hbar_{2}\right)}, \quad[4,2,3,1]=\frac{2 \hbar_{1}+\hbar_{2}}{48\left(4 \hbar_{1}+\hbar_{2}\right)},} \\
& {[2,3,4,1]=\frac{\left(2 \hbar_{1}+\hbar_{2}\right)^{2}}{12\left(4 \hbar_{1}+\hbar_{2}\right)\left(4 \hbar_{1}+3 \hbar_{2}\right)}, \quad[3,2,4,1]=-\frac{\left(2 \hbar_{1}+\hbar_{2}\right)^{2}}{12\left(4 \hbar_{1}+\hbar_{2}\right)\left(4 \hbar_{1}+3 \hbar_{2}\right)},} \\
& {[4,3,2,1]=-\frac{2 \hbar_{1}+\hbar_{2}}{48\left(4 \hbar_{1}+\hbar_{2}\right)}, \quad[3,4,2,1]=-\frac{\left(2 \hbar_{1}+\hbar_{2}\right)^{2}}{24\left(4 \hbar_{1}+\hbar_{2}\right)\left(4 \hbar_{1}+3 \hbar_{2}\right)},} \\
& {[2,1,3,4]=-\frac{2 \hbar_{1}+\hbar_{2}}{24\left(4 \hbar_{1}+3 \hbar_{2}\right)}, \quad[1,2,3,4]=\frac{2 \hbar_{1}+\hbar_{2}}{16\left(4 \hbar_{1}+3 \hbar_{2}\right)},} \\
& {[2,3,1,4]=\frac{\left(2 \hbar_{1}+\hbar_{2}\right)^{2}}{12\left(4 \hbar_{1}+\hbar_{2}\right)\left(4 \hbar_{1}+3 \hbar_{2}\right)}, \quad[3,2,1,4]=-\frac{\left(2 \hbar_{1}+\hbar_{2}\right)^{2}}{12\left(4 \hbar_{1}+\hbar_{2}\right)\left(4 \hbar_{1}+3 \hbar_{2}\right)},} \\
& {[1,3,2,4]=-\frac{2 \hbar_{1}+\hbar_{2}}{16\left(4 \hbar_{1}+3 \hbar_{2}\right)},[3,1,2,4]=\frac{\left(2 \hbar_{1}+\hbar_{2}\right)^{2}}{8\left(4 \hbar_{1}+\hbar_{2}\right)\left(4 \hbar_{1}+3 \hbar_{2}\right)},} \\
& {[4,3,1,2]=\frac{2 \hbar_{1}+\hbar_{2}}{32\left(4 \hbar_{1}+\hbar_{2}\right)}, \quad[3,4,1,2]=\frac{\left(2 \hbar_{1}+\hbar_{2}\right)^{2}}{16\left(4 \hbar_{1}+\hbar_{2}\right)\left(4 \hbar_{1}+3 \hbar_{2}\right)},} \\
& {[1,3,4,2]=-\frac{2 \hbar_{1}+\hbar_{2}}{32\left(4 \hbar_{1}+3 \hbar_{2}\right)}, \quad[3,1,4,2]=\frac{\left(2 \hbar_{1}+\hbar_{2}\right)^{2}}{16\left(4 \hbar_{1}+\hbar_{2}\right)\left(4 \hbar_{1}+3 \hbar_{2}\right)} .}
\end{aligned}
$$

Summary

- BPS/DT/PT counting for toric CY3: solved by crystal melting
- We defined a new algebra, the BPS quiver Yangian, in terms of CY3 data
- We have a well-defined representation of quiver Yangian in terms of crystal melting
- The representation is derived by equivariant localization in supersymmetric quantum mechanics

New Physics and new Mathematics!!

