Math-113, Homework 8, non textbook problems

A. Let A be an abelian group. Denote by

$$
\mathcal{H}=\{\phi: A \rightarrow A \mid \phi \text { is a group homomorphism }\}
$$

the collection of all homomorphisms from A to itself. Define two binary operations $+, *: \mathcal{H} \times \mathcal{H} \rightarrow \mathcal{H}$ as follows: For each $f, g \in \mathcal{H}$

$$
\begin{array}{ll}
(f+g): A \rightarrow A, & (f+g)(a)=f(a)+g(a) \\
(f * g): A \rightarrow A, & (f * g)(a)=f(g(a)) \tag{1b}
\end{array}
$$

- Prove that both operations are well-defined, namely that $f+g$ and $f * g$ are always group homomorphisms.
- Prove that $(\mathcal{H},+, *)$ is a ring.
- Is it a division ring? Prove or provide a counterexample.

Remark 1: The above ring is called the endomorphism ring of A and denoted by $\operatorname{End}(A)$. A well known example of such rings comes from linear algebra, when A is a vector space (which is an abelian group w.r.t. addition).
B. Let A be an abelian group. Now let

$$
\mathcal{F}=\{f: A \rightarrow A\}
$$

be the collection of all maps from A to itself. Define binary operations $+, *: \mathcal{F} \times \mathcal{F} \rightarrow \mathcal{F}$ as in (1).

- Prove that $(\mathrm{R} 1)$ is satisfied, i.e. that $(\mathcal{F},+)$ is an Abelian group. What is an identity of $(\mathcal{F},+)$?
- Prove that (R2) is satisfied, i.e. that $(\mathcal{F}, *)$ is associative.
- Exactly one of the two distributive laws in (R3) fails in general. Determine which distributive law (left or right) holds for $(\mathcal{F},+, *)$. Prove one distributive law and provide a counterexample to the other.
C. Consider the set of complex integers

$$
\mathbb{Z}[\mathbf{i}]=\{n+m \mathbf{i} \mid n, m \in \mathbb{Z}\} \quad \subset \mathbb{C}
$$

- Prove that $\mathbb{Z}[i]$ is a ring. This ring is called the Gaussian Integers.
- Prove that the group of units

$$
(\mathbb{Z}[\mathbf{i}])^{\times}=\{1,-1, \mathbf{i},-\mathbf{i}\}
$$

has exactly four elements.
Hint: Recall from HW1 how $|x+\mathbf{i} y|=\sqrt{x^{2}+y^{2}}$ behaves w.r.t. multiplication of complex numbers.

- Is the group of units $\left((\mathbb{Z}[\mathbf{i}])^{\times}, \times\right)$abelian? Determine its isomorphism class.
- Prove that $1+\mathbf{i}$ is a "Gaussian prime", namely that whenever for $a, b \in \mathbb{Z}[\mathbf{i}]$

$$
a b=1+\mathbf{i} \quad \Leftrightarrow \quad \text { either } a \text { is a unit, or } b \text { is a unit. }
$$

D.(Not for the grade)

Note that the group of units in integers is $\mathbb{Z}^{\times}=\{1,-1\} \simeq \mathbb{Z}_{2}$, similarly $(\mathbb{Z}[\mathbf{i}])^{\times}=\{1,-1, \mathbf{i},-\mathbf{i}\}=\ldots$. What will be the group of units for integer quaternions?

