## Math-113, Homework 3, non-textbook problems

A. Consider the set

$$
G:=\left\{\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right): a \in \mathbb{Z}\right\}
$$

- Show that it is a group, under matrix multiplication.
- Show that the map

$$
\begin{aligned}
(\mathbb{Z},+) & \rightarrow G, \\
a & \mapsto\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right)
\end{aligned}
$$

is a group isomorphism.
B. Let $G$ be an abelian group and let

$$
H=\left\{a \in G \mid a^{2}=1\right\} .
$$

be the subset of elements of orders 1 and 2 .

- Show that $H \leq G$ is a subgroup of $G$.
- Give an example of abelian group $G$, for which the above-defined $H$ is not a cyclic subgroup.

