Math-113, Homework 11, non-textbook problems

The following set of problems is a continuation of exercise 26.30. Please complete textbook exercise 26.30 first. Below we assume that all rings are commutative and we denote by Nil(X), the nilradical of a ring X.
A. Let R be a ring. For every ideal $I \subseteq R$ define the radical of I, denoted as \sqrt{I}, to be the set

$$
\sqrt{I}=\left\{r: r^{k} \in I, \text { for some } k \in \mathbb{N}\right\}
$$

- Show that \sqrt{I} is an ideal.
- Show that $I \subseteq \sqrt{I}$.
- Show that $\operatorname{Nil}(R)=\sqrt{(0)}$. Here (0) stands for the zero ideal of R.
- Let I_{1}, I_{2} be ideals, is it true that $\sqrt{I_{1} \cap I_{2}}=\sqrt{I_{1}} \cap \sqrt{I_{2}}$? Prove or provide a counterexample.
B. An ideal I is said to be radical if $I=\sqrt{I}$. Let $R=\mathbb{C}[x]$ be the ring of polynomials in one variable with complex coefficients.
- Find at least one ideal $I \subseteq R$, which is not radical.
- For the example constructed above, is it true that R / I has zero divisors? Give an example of a zero divisor, of prove that there are none.
- Consider the quotient ring \sqrt{I} / I for the example you have constructed. It is, in particular, a vector space over \mathbb{C}. Is it finite dimensional? If yes, find a basis and describe multiplication of basis elements.
C. (Optional, not for the grade) Show that $\sqrt{I} / I \cong \operatorname{Nil}(R / I)$.

