Math-113, Homework 10, non-textbook problems

A. Let p be a prime and $f(x) \in \mathbb{Z}_{p}[x]$ be a polynomial in one variable over \mathbb{Z}_{p}. Prove that for all $t \in \mathbb{Z}_{p}$, we have

$$
(f(t))^{p}=f\left(t^{p}\right)
$$

B. Let p be a prime and suppose that \mathbb{F} is a finite field with p^{d} elements, where $d \in \mathbb{N}$. Prove that

$$
\begin{equation*}
x^{p^{d}}-x=\prod_{b \in \mathbb{F}}(x-b) . \tag{1}
\end{equation*}
$$

where the product is taken over all elements of \mathbb{F}. Hint: Prove that every $b \in \mathbb{F}$ is a root of the l.h.s. of (1)

