§Propositional Logic, Predicates, and Equivalency

- A statement or a proposition is a sentence that is true (T) or false (F) but not both.
- The symbol \neg denotes *not*, \land denotes *and*, and \lor denotes *or*.
- If p is a proposition, the negation of p, $\neg p$, has opposite truth value from p. If p is true, $\neg p$ is false, if p is false, then $\neg p$ is true.
- If p and q are propositions, the conjunction of p and q, $p \wedge q$, is true when both p and q are true, and is false otherwise.
- If p and q are propositions, the disjunction of p and q, $p \lor q$, is false when both p and q are false, and is true otherwise.
- The symbol \equiv or \Leftrightarrow denotes equivalent truth value.
- The symbol \rightarrow denotes implication. The symbol \leftrightarrow indicates if and only if.
- If propositions p and q are equivalent, they are both true or both false, that is, they both have the same truth value.
- A tautology is a statement that is always true. A contradiction is a statement that is always false.
- DeMorgan's Laws.

$$\neg (p \lor q) \equiv \neg p \land \neg q$$
$$\neg (p \land q) \equiv \neg p \lor \neg q$$

- If p and q are propositions, the conditional "if p then q" (or "p only if q" or "q if p), denoted by $p \to q$, is false when p is true and q is false; otherwise it is true. p is a sufficient condition for q and q is a necessary condition for p.
- The contrapositive of a conditional statement of $p \to q$ is $\neg q \to \neg p$.
- The converse of $p \to q$ is $q \to p$.
- The inverse of $p \to q$ is $\neg p \to \neg q$.
- If p and q are propositions, the biconditional "p if and only if q," denoted by $p \leftrightarrow q$, is true if both p and q have the same truth values and is false if p and q have opposite truth values. The words *if and only if* are sometimes abbreviated iff.
- Logic formulas

$$\begin{split} p &\to q \equiv \neg p \lor q \\ p &\to q \equiv \neg q \to \neg p \\ p &\to q \not\equiv q \to p \\ p &\to q \not\equiv q \to p \\ \neg (p \to q) \equiv p \land \neg q \\ \neg (\forall x \text{ in } D, P(x)) \equiv \exists x \text{ in } D \text{ such that } \neg P(x) \\ \neg (\exists x \text{ in } D \text{ such that } P(x)) \equiv \forall x \text{ in } D, \neg P(x) \end{split}$$