4.4 Solving Congruences using Inverses

Solving linear congruences is analogous to solving linear equations in calculus. Our first goal is to solve the linear congruence \(ax \equiv b \pmod{m} \) for \(x \). Unfortunately we cannot always divide both sides by \(a \) to solve for \(x \).

Example 1. \(24 \equiv 8 \pmod{16} \). However, if we divide both sides of the congruence by 8, we end up with a wrong congruence: \(3 \not\equiv 1 \pmod{16} \). In fact, \(3 \equiv 3 \pmod{16} \).

Although we cannot always divide both sides of a congruence by any integer to produce a valid congruence, we can if this integer is relatively prime to the modulus, as shown in Theorem 7 in Section 4.3:

Theorem. Suppose \(m, a, b, c \in \mathbb{Z} \) and \(m \not\equiv 0 \). \(ac \equiv bc \pmod{m} \) and \(\gcd(c, m) = 1 \Rightarrow a \equiv b \pmod{m} \).

One method to solve \(ax \equiv b \pmod{m} \) for \(x \), is to use an integer \(\bar{a} \) such that \(\bar{a}a \equiv 1 \pmod{m} \).

Definition 1. If \(\bar{a} \in \mathbb{Z} \) satisfies \(a\bar{a} \equiv 1 \pmod{m} \), we say \(\bar{a} \) is inverse of \(a \) modulo \(m \).

The following theorem guarantees that the inverse of \(a \) exists whenever \(a \) and \(m \) are relatively prime.

Theorem 1. If \(\gcd(a, m) = 1 \) and \(m > 1 \), then an inverse of \(a \) modulo \(m \) exists. Furthermore, this inverse is unique modulo \(m \). (That is, there is a unique positive integer \(\bar{a} < m \) that is an inverse of \(a \) modulo \(m \) and every other inverse of \(a \) modulo \(m \) is congruent to \(\bar{a} \) modulo \(m \).)

Proof. By Bézout’s Theorem, since \(\gcd(a, m) = 1 \), there exist integers \(s \) and \(t \) such that

\[
1 = sa + tm.
\]

Therefore

\[
sa + tm \equiv 1 \pmod{m}.
\]

Because \(tm \equiv 0 \pmod{m} \), it follows that

\[
sa \equiv 1 \pmod{m}.
\]

Therefore \(s \) is an inverse of \(a \) modulo \(m \).

To show that the inverse of \(a \) is unique, suppose that there is another inverse \(b \) of the \(a \) modulo \(m \). Thus we have \(ba \equiv 1 \pmod{m} \). This congruence means \(m \mid ba - 1 \). Similarly, \(m \mid sa - 1 \). Therefore \(m \) divides the difference \((ba - 1) - (sa - 1) = ba - sa \). Thus \(ba \equiv sa \pmod{m} \). It follows from Theorem 7 in Section 4.3 that \(b \equiv s \pmod{m} \).
To solve \(ax \equiv b \) (mod \(m \)), if the inverse of \(a \) exists, we may multiply both sides by this inverse and obtain \(x \). Thus it is useful to first solve \(ay \equiv 1 \) (mod \(m \)).

Using inspection to find an inverse of \(a \) modulo \(m \) is easy when \(m \) is small. For example, to find an inverse of 3 modulo 7, we can find \(j \cdot 3 \) for \(j = 1, 2, \ldots, 6 \), stopping when we find a multiple of 3 that is one more than a multiple of 7. So \(2 \cdot 3 \equiv 6 \equiv -1 \) (mod 7). Thus \(-2 \cdot 3 \equiv 1 \) (mod 7). Note that every integer congruent to \(-2\) modulo 7 is also an inverse of 3, such as 5, \(-9\), 12, and so on.

Therefore the inverse of 3 modulo 7 is \(-2 \equiv 5 \) (mod 7).

A more efficient way to find the inverse of an \(a \) modulo \(m \), especially for large numbers, is by reversing the steps in Euclidean Algorithm and finding the Bézout’s linear combination of gcd(\(a, m \)) = 1 in terms of \(a \) and \(m \). That is, find \(sa + tm = 1 \), where \(s \) and \(t \) are integers. Reducing both sides of this equation modulo \(m \) tells us that \(s \) is an inverse of \(a \) modulo \(m \).

Example 2. Find an inverse of 4 modulo 15 by first finding Bézout coefficients of 4 and 15.

Solution. Because \(\text{gcd}(4, 15) = 1 \), Theorem 1 tells us that an inverse of 4 modulo 15 exists. The Euclidean algorithm ends quickly when used to find the greatest common divisor of 4 and 15:

\[
\begin{align*}
15 &= 3 \cdot 4 + 3 \\
4 &= 1 \cdot 3 + 1 \\
3 &= 3 \cdot 1 + 0
\end{align*}
\]

So

\[
\begin{align*}
1 &= 1 \cdot 4 - 1 \cdot 3 \\
15 - 3 \cdot 4 &= 3 \\
\therefore 1 &= 1 \cdot 4 - (15 - 3 \cdot 4) \\
\therefore 1 &= 4 \cdot 4 + (-1) \cdot 15
\end{align*}
\]

We see that 4 is the inverse of 4 modulo 15. Indeed, \(4 \cdot 4 \equiv 16 \equiv 1 \) (mod 15).

Once we have an inverse \(\bar{a} \) of \(a \) modulo \(m \), we can solve the congruence \(ax \equiv b \) (mod \(m \)) by multiplying both sides of the linear congruence by \(a \).

Example 3. What are the solutions of the linear congruence \(3x \equiv 4 \) (mod 7)?

Solution. We saw that 5 is an inverse of 3 modulo 7. Multiplying both sides of the congruence by 5 shows that

\[5 \cdot 3x \equiv 5 \cdot 4 \pmod{7}. \]

Thus \(x \equiv 20 \equiv 6 \) (mod 7).

To check whether \(x \equiv 6 \) (mod 7) is a solution:

\[3x \equiv 3 \cdot 6 \pmod{7} \Rightarrow 3x \equiv 18 \equiv 4 \pmod{7}, \]

2
as desired. Thus all \(x \equiv 6 \pmod{7} \) are solutions, namely \(-8, -1, 6, 13, 20, \ldots\).

In the first century, the Chinese mathematician Sun-Tsu asked:
There are certain things whose number is unknown. When divided by 3, the remainder is 2; when divided by 5, the remainder is 3; and when divided by 7, the remainder is 2. What will be the number of things?

This puzzle can be translated into the following question: What are the solutions of the systems of congruences?

Example 4. Can we find \(x \) such that
\[
\begin{align*}
x &\equiv 2 \pmod{3} \\
x &\equiv 3 \pmod{5} \\
x &\equiv 2 \pmod{7}
\end{align*}
\]
When does such an \(x \) exist? How to find it?

The Chinese remainder theorem, named after the Chinese heritage of problems involving systems of linear congruences, states that when the moduli of a system of linear congruences are pairwise relatively prime, there is a unique solution of the system modulo the product of the moduli.

Theorem 2 (The Chinese Remainder Theorem). Let \(m_1, m_2, \ldots, m_n \) be pairwise relatively prime positive integers greater than one and \(a_1, a_2, \ldots, a_n \) arbitrary integers. Then the system
\[
\begin{align*}
x &\equiv a_1 \pmod{m_1} \\
x &\equiv a_2 \pmod{m_2} \\
& \vdots \\
x &\equiv a_n \pmod{m_n}
\end{align*}
\]
has a unique solution modulo \(m = m_1m_2\cdots m_n \). (That is, there is a solution \(x \) with \(0 \leq x < m \), and all other solutions are congruent modulo \(m \) to this solution.)

Proof. To establish this theorem, we need to show that a solution exists and that it is unique modulo \(m \). We show that the solution exists by describing how to get \(x \). The proof of uniqueness is a homework problem (Exercise 30 in Section 4.4).

To construct a simultaneous solution, first let
\[M_k = \frac{m}{m_k}\]
for \(k = 1, 2, \ldots, n \). That is, \(M_k \) is the product of the moduli except for \(m_k \). Because \(m_i \) and \(m_k \) have no common factors greater than 1 when \(i \neq k \), it follows that \(\gcd(m_k, M_k) = 1 \). Consequently, by Theorem 1, we know that there is an integer \(y_k \), an inverse of \(M_k \) modulo \(m_k \), such that
\[M_ky_k \equiv 1 \pmod{m_k}.
\]
To construct a simultaneous solution, form the sum
\[x = a_1M_1y_1 + a_2M_2y_2 + \cdots + a_nM_ny_n.
\]
We will now show that x is a simultaneous solution. First, note that because $M_j \equiv 0 \pmod{m_k}$ whenever $j \neq k$, all terms except the kth term in this sum are congruent to 0 modulo m_k. Because $M_k y_k \equiv 1 \pmod{m_k}$, we see that

$$x \equiv a_k M_k y_k \equiv a_k \pmod{m_k},$$

for $k = 1, 2, \ldots, n$. We have shown that x is a simultaneous solution to the n congruences.

Solution to Sun-Tsu’s Problem. The moduli 3, 5, and 7 are pairwise relatively prime, so the Chinese Remainder Theorem applies.

Let $m = 3 \cdot 5 \cdot 7 = 105$, $M_1 = m/3 = 5 \cdot 7 = 35$, $M_2 = m/5 = 3 \cdot 7 = 21$, and $M_3 = m/7 = 3 \cdot 5 = 15$.

The inverse of M_1 modulo 3 is 2 because $35 \cdot 2 \equiv 2 \cdot 2 \equiv 4 \equiv 1 \pmod{3}$.

The inverse of M_2 modulo 5 is 1 because $21 \cdot 1 \equiv 21 \equiv 1 \pmod{5}$.

The inverse of M_3 modulo 7 is 1 because $15 \cdot 1 \equiv 15 \equiv 1 \pmod{7}$.

The solutions to this system are those x such that

$$x \equiv a_1 M_1 y_1 + a_2 M_2 y_2 + a_3 M_3 y_3 = 2 \cdot 35 \cdot 2 + 3 \cdot 21 \cdot 1 + 2 \cdot 15 \cdot 1$$

$$= 140 + 63 + 30$$

$$= 233$$

$$\equiv 23 \pmod{105}.$$

It follows that 23 is the smallest positive integer that is a simultaneous solution.

We conclude that 23 is the smallest positive integer that leaves a remainder of 2 when divided by 3, a remainder of 3 when divided by 5, and a remainder of 2 when divided by 7.

Another method, called back substitution, is often more efficient to solve a system of linear congruences. The following example demonstrates this method.

Example 5. Find all integers x such that $x \equiv 1 \pmod{5}$, $x \equiv 2 \pmod{6}$, and $x \equiv 3 \pmod{7}$.
Solution.

\[x \equiv 1 \pmod{5} \]
\[\therefore x = 5t + 1 \quad \text{for some integer } t \]
\[\therefore 5t + 1 \equiv 2 \pmod{6} \]
\[\therefore 5t \equiv 1 \pmod{6} \]
\[\therefore (-1 \cdot 5t) \equiv (-1 \cdot 1) \pmod{6} \]
\[\therefore t \equiv -1 \equiv 5 \pmod{6} \]
\[\therefore t = 6u + 5 \quad \text{for some integer } u \]
\[\therefore x = 5(6u + 5) + 1 \]
\[\therefore x = 30u + 26 \]
\[\therefore 30u + 26 \equiv 3 \pmod{7} \]
\[\therefore 30u \equiv -23 \pmod{7} \]
\[\therefore 30u \equiv 5 \pmod{7} \]
\[\therefore (-3 \cdot 30u) \equiv (-3 \cdot 5) \pmod{7} \]
\[\therefore u \equiv -15 \pmod{7} \]
\[\therefore u \equiv -1 \pmod{7} \]
\[\therefore u \equiv 6 \pmod{7} \]
\[\therefore u = 7v + 6 \quad \text{for some integer } v \]
\[\therefore x = 30(7v + 6) + 26 \]
\[\therefore x = 210v + 180 + 26 \]
\[\therefore x = 210v + 206 \]

Translating the last equation back into a congruence, we find the solution to the simultaneous congruences,

\[x \equiv 206 \pmod{210}. \]

Fermat’s Little Theorem

One of the most useful of important discoveries of the great French mathematician Pierre de Fermat is that \(p \) divides \(a^{p-1} - 1 \) whenever \(p \) is prime and \(a \) is an integer not divisible by \(p \).

Theorem 3 (Fermat’s Little Theorem). If \(p \) is prime and \(a \in \mathbb{Z}, p \not\mid a \), then

\[a^{p-1} \equiv 1 \pmod{p}. \]

Furthermore, for every integer \(a \), we have

\[a^p \equiv a \pmod{p}. \]

Proof. Suppose that integer \(a \) is not divisible by prime \(p \). Then no two of integers \(a, 2a, 3a, \ldots, (p - 1)a \) are congruent modulo \(p \), for if two of these integers were
congruent modulo p, say ia and ja, where $1 \leq i < j < p$, then we would have $p \mid ja - ia$, or $p \mid a(j - i)$. By Lemma 2 in Section 4.3, since a is not divisible by p, p must divide $j - i$, which is impossible, because $0 < j - i < p$. Therefore, no two of the integers $a, 2a, 3a, \ldots, (p - 1)a$ are congruent modulo p. Therefore, each must be congruent to a different number from 1 to $p - 1$. Thus if we multiply them all together, we will obtain the same product, modulo p, as if we had multiplied all the numbers from 1 to $p - 1$. Therefore,

$$2 \cdot 3 \cdots (p - 1) \equiv a(2a)(3a) \cdots (p - 1)a \pmod{p}. $$

The right-hand side of this congruence is $(p - 1)! \cdot a^{p-1}$, and the left-hand side is $(p - 1)!$. Therefore,

$$(p - 1)! \equiv a^{p-1}(p - 1)! \pmod{p}. $$

The contrapositive statement of Lemma 3 in Section 4.3 states that if $p \nmid a_i$, then $p \nmid a_1a_2 \cdots a_n$, when p is a prime. Thus here we have $p \nmid (p - 1)!$. Since $\gcd(p, (p - 1)!) = 1$, by Theorem 7 in Section 4.3, we conclude that the above congruence may be written as

$$a^{p-1} \equiv 1 \pmod{p}. $$

For the second part of Fermat’s Little Theorem, if $p \mid a$, then both sides of $a^p \equiv a \pmod{p}$ are 0 modulo p, so the congruence holds. If $p \nmid a$, then we may multiply both sides of

$$a^{p-1} \equiv 1 \pmod{p}$$

by a to obtain

$$a^p \equiv a \pmod{p}. $$

Fermat’s little theorem is extremely useful in computing the remainders modulo p of large powers of integers.

Example 6. Find $7^{222} \pmod{11}$.

Solution. By Fermat’s little theorem, we know that $7^{10} \equiv 1 \pmod{11}$. Thus

$$7^{222} = 7^{220+2} = 7^{220} \cdot 7^2 = (7^{10})^{22} \cdot 7^2 \equiv 1^{22} \cdot 49 \equiv 49 \equiv (49 - 44) \equiv 5 \pmod{11}. $$

Therefore $7^{222} \pmod{11} = 5$.

The above example illustrated how we can use Fermat’s little theorem to compute $a^n \pmod{p}$, where p is prime and $p \nmid a$. First, we use the division algorithm to find the quotient q and remainder r when n is divided by $p - 1$, so that $n = q(p - 1) + r$ where $0 \leq r < p - 1$. It follows that $a^n = a^{q(p - 1)+r} = (a^{p-1})^q a^r \equiv 1^q a^r \equiv a^r \pmod{p}$. Hence, to find $a^n \pmod{p}$, we only need to compute $a^r \pmod{p}$.
