4.6 Variation of Parameters

4.6.1 Wronskian and Linear Independence

Suppose that we have found two solutions y_{1} and y_{2} of the differential equation $L(y)=a y^{\prime \prime}+b y^{\prime}+c y=0$ and we are interested in whether they are linearly independent. That is, whether there are scalars c_{1} and c_{2} (other than $c_{1}=c_{2}=0$) such that

$$
c_{1} y_{1}+c_{2} y_{2}=0
$$

If there are, that is, if y_{1} and y_{2} are dependent, it follows by differentiation that

$$
c_{1} y_{1}^{\prime}+c_{2} y_{2}^{\prime}=0
$$

Evaluating these functions at an arbitrary point $t_{0} \in I$, we have

$$
\begin{aligned}
& c_{1} y_{1}\left(t_{0}\right)+c_{2} y_{2}\left(t_{0}\right)=0 \\
& c_{1} y_{1}^{\prime}\left(t_{0}\right)+c_{2} y_{2}^{\prime}\left(t_{0}\right)=0
\end{aligned}
$$

which may be regarded as a system of equations in the "unknowns" c_{1} and c_{2}. Its determinant of coefficients is the number

$$
\left|\begin{array}{cc}
y_{1}\left(t_{0}\right) & y_{2}\left(t_{0}\right) \\
y_{1}^{\prime}\left(t_{0}\right) & y_{2}^{\prime}\left(t_{0}\right)
\end{array}\right|
$$

and we know that the only way the system can have a nontrivial solution $\left(c_{1}, c_{2}\right) \neq(0,0)$ is for this determinant to be zero. We define the Wronskian of y_{1} and y_{2} to be the function

$$
W(t)=\left|\begin{array}{ll}
y_{1}(t) & y_{2}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t)
\end{array}\right|
$$

Then we have proved that

$$
\text { linear dependence of } y_{1} \text { and } y_{2} \Rightarrow W(t)=0 \text { for all } t \in I \text {. }
$$

An equivalent statement is that if there is any point $t \in I$ for which $W(t) \neq 0$, then y_{1} and y_{2} are linearly independent.

Theorem. Suppose that y_{1} and y_{2} are linearly independent solutions of the homogeneous linear equation $L(y)=0$ in the interval I. Then their Wronskian is nowhere zero in I.
Proof. Suppose the contrary. Then there is a point $t_{0} \in I$ for which $W\left(t_{0}\right)=0$. This implies that the system

$$
\begin{aligned}
& c_{1} y_{1}\left(t_{0}\right)+c_{2} y_{2}\left(t_{0}\right)=0 \\
& c_{1} y_{1}^{\prime}\left(t_{0}\right)+c_{2} y_{2}^{\prime}\left(t_{0}\right)=0
\end{aligned}
$$

has a nontrivial solution $\left(c_{1}, c_{2}\right) \neq(0,0)$. Choose such a solution and define the function $\phi=c_{1} y_{1}+c_{2} y_{2}$. Since y_{1} and y_{2} are solutions of $L(y)=0$, so is ϕ. Moreover,

$$
\begin{aligned}
\phi\left(t_{0}\right) & =c_{1} y_{1}\left(t_{0}\right)+c_{2} y_{2}\left(t_{0}\right)
\end{aligned}=001+c_{2} y_{2}^{\prime}\left(t_{0}\right)=0
$$

because c_{1} and c_{2} satisfy the above system. Hence ϕ satisfies the initial conditions $\phi\left(t_{0}\right)=0$ and $\phi^{\prime}\left(t_{0}\right)=0$.
Now comes the deep part! According to the Uniqueness Theorem, there is only one solution of $L(y)=0$ satisfying given initial conditions. It is obvious that the zero function $\psi(t)=0$ is a solution satisfying the initial conditions $\psi\left(t_{0}\right)=0$ and $\psi^{\prime}\left(t_{0}\right)=0$. Since ϕ is, too, ϕ must be the zero function. Hence

$$
c_{1} y_{1}+c_{2} y_{2}=0 \quad \text { where } c_{1} \text { and } c_{2} \text { are not both zero. }
$$

But that's impossible! For if it were true, y_{1} and y_{2} would be linearly dependent, whereas by hypothesis they are independent. Our opening supposition (that the theorem is false) is incorrect; the theorem is true.

4.6.2 Lagrange's Method of Variation of Parameters

Suppose that two independent solutions y_{1} and y_{2} of the homogeneous linear equation

$$
L(y)=a(t) y^{\prime \prime}+b(t) y^{\prime}+c(t) y=0
$$

are known. Then of course the function $\phi=v_{1} y_{1}+v_{2} y_{2}$ is also a solution if v_{1} and v_{2} are constants. The idea (due to Lagrange) is to try a solution of the nonhomogeneous equation $L(y)=f$ in this form, but with v_{1} and v_{2} as unknown functions to be determined. Let

$$
y_{p}(t)=v_{1} y_{1}(t)+v_{2} y_{2}(t)
$$

be this trial solution. In order to determine v_{1} and v_{2}, two conditions must be imposed. One is the fact that y_{p} is supposed to be a solution of the nonhomogeneous equation, that is, $L\left(y_{p}\right)=f$. The other may be imposed more or less arbitrary; Lagrange's idea was to treat the variables v_{1} and v_{2} as "pseudo-constants."

To see what we mean, note that

$$
y^{\prime}=v_{1} y_{1}^{\prime}+v_{1}^{\prime} y_{1}+v_{2} y_{2}^{\prime}+v_{2}^{\prime} y_{2}
$$

If v_{1} and v_{2} were true constants, the terms $v_{1}^{\prime} y_{1}$ and $v_{2}^{\prime} y_{2}$ would not appear. The condition we impose is that their sum drops out, that is,

$$
\begin{equation*}
v_{1}^{\prime} y_{1}+v_{2}^{\prime} y_{2}=0 \tag{1}
\end{equation*}
$$

This reduces the formula for y^{\prime} to $y^{\prime}=v_{1} y_{1}^{\prime}+v_{2} y_{2}^{\prime}$, from which

$$
y^{\prime \prime}=v_{1} y_{1}^{\prime \prime}+v_{1}^{\prime} y_{1}^{\prime}+v_{2} y_{2}^{\prime \prime}+v_{2}^{\prime} y_{2}^{\prime}
$$

The beauty of this is that no second derivatives of the unknown functions v_{1} and v_{2} appear. When we substitute in

$$
L(y)=a y^{\prime \prime}+b y^{\prime}+c y=f
$$

we will have only a first-order problem to solve:

$$
\begin{aligned}
& L(y)=f \\
& \therefore a\left(v_{1} y_{1}^{\prime \prime}+v_{1}^{\prime} y_{1}^{\prime}+v_{2} y_{2}^{\prime \prime}+v_{2}^{\prime} y_{2}^{\prime}\right)+b\left(v_{1} y_{1}^{\prime}+v_{2} y_{2}^{\prime}\right)+c\left(v_{1} y_{1}+v_{2} y_{2}\right)=f \\
& \therefore v_{1}\left(a y_{1}^{\prime \prime}+b y_{1}^{\prime}+c y_{1}\right)+v_{2}\left(a y_{2}^{\prime \prime}+b y_{2}^{\prime}+c y_{2}\right)+a\left(v_{1}^{\prime} y_{1}^{\prime}+v_{2}^{\prime} y_{2}^{\prime}\right)=f
\end{aligned}
$$

Since y_{1} and y_{2} are solutions of $L(y)=0$, the first two parentheses are zero, so the condition that our trial solution satistifes $L(y)=f$ reduces to

$$
a\left(v_{1}^{\prime} y_{1}^{\prime}+v_{2}^{\prime} y_{2}^{\prime}\right)=f
$$

or

$$
\begin{equation*}
v_{1}^{\prime} y_{1}^{\prime}+v_{2}^{\prime} y_{2}^{\prime}=f / a \tag{2}
\end{equation*}
$$

Equations (1) and (2) constitute a system in the unknowns v_{1}^{\prime} and v_{2}^{\prime}, namely

$$
\begin{aligned}
& y_{1} v_{1}^{\prime}+y_{2} v_{2}^{\prime}=0 \\
& y_{1}^{\prime} v_{1}^{\prime}+y_{2}^{\prime} v_{2}^{\prime}=f / a
\end{aligned}
$$

A remarkable aspect of this system is that its determinant of coefficients is the Wronskian of y_{1} and y_{2},

$$
W=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right| .
$$

Since y_{1} and y_{2} are linearly indpendent solutions of $L(y)=0$, the Wronskian is nowhere zero, so we know that the system can be solve by Cramer's Rule. In other words, we can find v_{1}^{\prime} and v_{2}^{\prime}. Integration will yield v_{1} and v_{2}, so the method works.

Example 1. Find a general solution to $y^{\prime \prime}+9 y=\sec ^{2}(3 t)$.
Example 2. Find a particular solution to $2 x^{\prime \prime}(t)-2 x^{\prime}(t)-4 x(t)=2 e^{2 t}$ by (a) undetermined coefficients and (b) variation of parameters, and compare the two methods.

Example 3. Find a general solution to $y^{\prime \prime}-6 y^{\prime}+9 y=t^{-3} e^{3 t}$.
As you can see, Lagrange's method of variation of parameters may be messy. Its virtue is that it is infallible. The method of undetermined coefficients is usually easier when it works, but it applies only in special cases.

