
4.6 Variation of Parameters

4.6.1 Wronskian and Linear Independence

Suppose that we have found two solutions y1 and y2 of the differential equation L(y) = ay′′ + by′ + cy = 0
and we are interested in whether they are linearly independent. That is, whether there are scalars c1 and c2
(other than c1 = c2 = 0) such that

c1y1 + c2y2 = 0.

If there are, that is, if y1 and y2 are dependent, it follows by differentiation that

c1y
′
1 + c2y

′
2 = 0.

Evaluating these functions at an arbitrary point t0 ∈ I, we have

c1y1(t0) + c2y2(t0) = 0

c1y
′
1(t0) + c2y

′
2(t0) = 0

which may be regarded as a system of equations in the “unknowns” c1 and c2. Its determinant of coefficients
is the number ∣∣∣∣ y1(t0) y2(t0)

y′1(t0) y′2(t0)

∣∣∣∣
and we know that the only way the system can have a nontrivial solution (c1, c2) 6= (0, 0) is for this deter-
minant to be zero. We define the Wronskian of y1 and y2 to be the function

W (t) =

∣∣∣∣ y1(t) y2(t)
y′1(t) y′2(t)

∣∣∣∣ .
Then we have proved that

linear dependence of y1 and y2 ⇒W (t) = 0 for all t ∈ I.

An equivalent statement is that if there is any point t ∈ I for which W (t) 6= 0, then y1 and y2 are linearly
independent.

Theorem. Suppose that y1 and y2 are linearly independent solutions of the homogeneous linear equation
L(y) = 0 in the interval I. Then their Wronskian is nowhere zero in I.

Proof. Suppose the contrary. Then there is a point t0 ∈ I for which W (t0) = 0. This implies that the system

c1y1(t0) + c2y2(t0) = 0

c1y
′
1(t0) + c2y

′
2(t0) = 0

has a nontrivial solution (c1, c2) 6= (0, 0). Choose such a solution and define the function φ = c1y1 + c2y2.
Since y1 and y2 are solutions of L(y) = 0, so is φ. Moreover,

φ(t0) = c1y1(t0) + c2y2(t0) = 0

φ′(t0) = c1y
′
1(t0) + c2y

′
2(t0) = 0

because c1 and c2 satisfy the above system. Hence φ satisfies the initial conditions φ(t0) = 0 and φ′(t0) = 0.
Now comes the deep part! According to the Uniqueness Theorem, there is only one solution of L(y) = 0

satisfying given initial conditions. It is obvious that the zero function ψ(t) = 0 is a solution satisfying the
initial conditions ψ(t0) = 0 and ψ′(t0) = 0. Since φ is, too, φ must be the zero function. Hence

c1y1 + c2y2 = 0 where c1 and c2 are not both zero.

But that’s impossible! For if it were true, y1 and y2 would be linearly dependent, whereas by hypothesis they
are independent. Our opening supposition (that the theorem is false) is incorrect; the theorem is true.
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4.6.2 Lagrange’s Method of Variation of Parameters

Suppose that two independent solutions y1 and y2 of the homogeneous linear equation

L(y) = a(t)y′′ + b(t)y′ + c(t)y = 0

are known. Then of course the function φ = v1y1 + v2y2 is also a solution if v1 and v2 are constants. The
idea (due to Lagrange) is to try a solution of the nonhomogeneous equation L(y) = f in this form, but with
v1 and v2 as unknown functions to be determined. Let

yp(t) = v1y1(t) + v2y2(t)

be this trial solution. In order to determine v1 and v2, two conditions must be imposed. One is the fact
that yp is supposed to be a solution of the nonhomogeneous equation, that is, L(yp) = f . The other may be
imposed more or less arbitrary; Lagrange’s idea was to treat the variables v1 and v2 as “pseudo-constants.”

To see what we mean, note that

y′ = v1y
′
1 + v′1y1 + v2y

′
2 + v′2y2.

If v1 and v2 were true constants, the terms v′1y1 and v′2y2 would not appear. The condition we impose is
that their sum drops out, that is,

v′1y1 + v′2y2 = 0. (1)

This reduces the formula for y′ to y′ = v1y
′
1 + v2y

′
2, from which

y′′ = v1y
′′
1 + v′1y

′
1 + v2y

′′
2 + v′2y

′
2.

The beauty of this is that no second derivatives of the unknown functions v1 and v2 appear. When we
substitute in

L(y) = ay′′ + by′ + cy = f

we will have only a first-order problem to solve:

L(y) = f

∴ a(v1y
′′
1 + v′1y

′
1 + v2y

′′
2 + v′2y

′
2) + b(v1y

′
1 + v2y

′
2) + c(v1y1 + v2y2) = f

∴ v1(ay′′1 + by′1 + cy1) + v2(ay′′2 + by′2 + cy2) + a(v′1y
′
1 + v′2y

′
2) = f.

Since y1 and y2 are solutions of L(y) = 0, the first two parentheses are zero, so the condition that our trial
solution satistifes L(y) = f reduces to

a(v′1y
′
1 + v′2y

′
2) = f

or
v′1y
′
1 + v′2y

′
2 = f/a. (2)

Equations (1) and (2) constitute a system in the unknowns v′1 and v′2, namely

y1v
′
1 + y2v

′
2 = 0

y′1v
′
1 + y′2v

′
2 = f/a

A remarkable aspect of this system is that its determinant of coefficients is the Wronskian of y1 and y2,

W =

∣∣∣∣ y1 y2
y′1 y′2

∣∣∣∣ .
Since y1 and y2 are linearly indpendent solutions of L(y) = 0, the Wronskian is nowhere zero, so we know
that the system can be solve by Cramer’s Rule. In other words, we can find v′1 and v′2. Integration will yield
v1 and v2, so the method works.
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Example 1. Find a general solution to y′′ + 9y = sec2(3t).

Example 2. Find a particular solution to 2x′′(t) − 2x′(t) − 4x(t) = 2e2t by (a) undetermined coefficients
and (b) variation of parameters, and compare the two methods.

Example 3. Find a general solution to y′′ − 6y′ + 9y = t−3e3t.

As you can see, Lagrange’s method of variation of parameters may be messy. Its virtue is that it is
infallible. The method of undetermined coefficients is usually easier when it works, but it applies only in
special cases.
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