9.5 Homogeneous Linear Systems with Constant Coefficients

Theorem 5. Suppose the $n \times n$ constant matrix A has n linearly independent eigenvectors $\mathbf{u}_1, \ldots, \mathbf{u}_n$. Let λ_i be the eigenvalue corresponding to \mathbf{u}_i . Then

$$\{e^{\lambda_1 t} \mathbf{u}_1, \dots, e^{\lambda_n t} \mathbf{u}_n\}$$
(1)

is a fundamental solution set for the homogeneous system $\mathbf{x}' - A\mathbf{x} = \mathbf{0}$. Consequently, a general solution of $\mathbf{x}' - A\mathbf{x} = \mathbf{0}$ is

$$\mathbf{x}(t) = c_1 e^{\lambda_1 t} \mathbf{x}_1(t) + \dots + c_n e^{\lambda_n t} \mathbf{x}_n(t),$$
(2)

where c_1, \ldots, c_n are arbitrary constants.

Proof. The vector functions in (1) are solutions to the homogeneous system. Moreover, their Wronskian is

$$W(t) = \det \begin{bmatrix} e^{\lambda_1 t} \mathbf{u}_1 & \cdots & e^{\lambda_n t} \mathbf{u}_n \end{bmatrix} = e^{(\lambda_1 + \cdots + \lambda_n)t} \det \begin{bmatrix} \mathbf{u}_1 & \cdots & \mathbf{u}_n \end{bmatrix}.$$

Since the eigenvectors are assumed to be linearly independent, it follows that det $[\mathbf{u}_1 \cdots \mathbf{u}_n]$ is not zero. Hence the Wronskian W(t) is never zero. This shows that (1) is a fundamental solution set, and consequently a general solution is given by (2).

Theorem 6. If $\lambda_1, \ldots, \lambda_m$ are distinct eigenvalues for the matrix A and \mathbf{u}_i is an eigenvector associated with λ_i , then $\mathbf{u}_1, \ldots, \mathbf{u}_m$ are linearly independent.

Corollary. If the $n \times n$ constant matrix A has n distinct eigenvalues $\lambda_1, \ldots, \lambda_n$ and \mathbf{u}_i is an eigenvector associated with λ_i , then

$$\{e^{\lambda_1 t}\mathbf{u}_1,\ldots,e^{\lambda_n t}\mathbf{u}_n\}$$

is a fundamental solution set for the homogeneous system $\mathbf{x}' - A\mathbf{x} = \mathbf{0}$.

Remark. A real $n \times n$ symmetric matrix always has n linearly independent eigenvectors and all its eigenvalues are real.

Example 1. Find a general solution of the system $\mathbf{x}'(t) - A\mathbf{x}(t) = \mathbf{0}$ for the given matrix

$$A = \left[\begin{array}{rrr} -1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 3 & -1 \end{array} \right]$$

Example 2. Consider the system $\mathbf{x}'(t) - A\mathbf{x}(t) = \mathbf{0}, t \ge 0$, with $A = \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix}$.

a) Show that the matrix A has eigenvalues $\lambda_1 = -1$ and $\lambda_2 = -3$ with corresponding eigenvectors $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

and
$$\mathbf{u}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
.

- b) Sketch the trajectory of the solution having initial vector $\mathbf{x}(0) = \mathbf{u}_1$.
- c) Sketch the trajectory of the solution having initial vector $\mathbf{x}(0) = -\mathbf{u}_2$.
- d) Sketch the trajectory of the solution having initial vector $\mathbf{x}(0) = \mathbf{u}_1 \mathbf{u}_2$.

Example 3. Find a fundamental matrix for the system $\mathbf{x}'(t) - A\mathbf{x}(t) = \mathbf{0}$ for $A = \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & -1 \\ 3 & 3 & -1 \end{bmatrix}$.

Example 4. Solve the initial value problem

$$\mathbf{x}'(t) - \begin{bmatrix} 6 & -3 \\ 2 & 1 \end{bmatrix} \mathbf{x}(t) = \mathbf{0}, \quad \mathbf{x}(0) = \begin{bmatrix} -10 \\ -6 \end{bmatrix}.$$