
9.4 Linear Systems in Normal Form

We say that a system of n linear differential equations is in normal form if it is expressed as

x′(t)−A(t)x(t) = f(t), (1)

where x(t) =


x1(t)
x2(t)

...
xn(t)

 , f(t) =


f1(t)
f2(t)

...
fn(t)

, and A(t) = [aij(t)] is an n×n matrix. The system is homogeneous

when f(t) = 0, otherwise the system is nonhomogeneous. An nth-order linear differential equation

y(n)(t) + pn−1(t)y(n−1)(t) + · · ·+ p0(t)y(t) = g(t) (2)

can be written as a first-order system in normal form using the substitution x1(t) = y(t), x2(t) = y′(t), . . . , xn(t) =

y(n−1)(t). Equation (2) is equivalent to x′(t) = A(t)x(t) + f(t), where x(t) =


x1

x2

...
xn

 , f(t) =


0
0
...

g(t)

, and

A(t) =


0 1 0 · · · 0 0
0 0 1 0 0
...

...
...

...
...

0 0 0 · · · 0 1
−p0(t) −p1(t) −p2(t) · · · −pn−2(t) −pn−1(t)

 .

The initial value problem for the normal system (1) is the problem of finding a differentiable vector function
x(t) that satisfies the system on an interval I and also satisfies the initial condition x(t0) = x0, where t0 is

a given point of I and x0 =

 x1,0

...
xn,0

 is a given vector.

Theorem 2 (Existence and Uniqueness). If A(t) and f(t) are continuous on an open interval I that contains
the point t0, then for any choice of the initial vector x0, there exists a unique solution x(t) on the whole
interval I to the initial value problem

x′(t)−A(t)x(t) = f(t), x(t0) = x0.

We may write system (1) as x′ − Ax = f . Let L(x) = x′ − Ax. Then L is a linear operator that maps
vector functions into vector functions.

Definition. The m vector functions x1, . . . ,xm are linearly dependent on an interval I if there exist con-
stants c1, . . . , cm, not all zero, such that

c1x1(t) + · · ·+ cmxm(t) = 0 (3)

for all t in I. If the vectors are not linearly dependent, they are said to be linearly independent on I.

Definition. The Wronskian of n vector functions x1(t) =

 x1,1

...
xn,1

 , . . . ,xn =

 x1,n

...
xn,n

 is defined to be

the function

W (x1, . . . ,xn) =

∣∣∣∣∣∣∣∣∣
x1,1(t) x1,2(t) · · · x1,n(t)
x2,1(t) x2,2(t) · · · x2,n(t)

...
...

...
xn,1(t) xn,2(t) · · · xn,n(t)

∣∣∣∣∣∣∣∣∣ .
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Remark. Vector functions x1(t), . . . ,xn(t) are linearly independent on an interval if their Wronskian is
nonzero at any point in the interval.

Proposition. If vector functions x1(t), . . . ,xn(t) are independent solutions to a homogeneous system L(x) =
0, that is, x′ − Ax = 0, where A is an n × n matrix of continuous functions, then the Wronskian is never
zero on I.

Proof. Suppose to the contrary that W (t0) = 0. Then the column vectors x1(t0), . . . ,xn(t0) in the determi-
nant are linearly dependent. Thus there exist scalars c1, . . . , cn, not all zero, such that at t = t0

c1x1(t0) + · · ·+ cnxn(t0) = 0.

However, c1x1(t) + · · ·+ cnxn(t) and the vector function z(t) = 0 are both solutions to L(x) = 0, and they
agree at the point t0. So these solutions must be identical on I according to the existence and uniqueness
theorem. That is,

c1x1(t) + · · ·+ cnxn(t) = 0

for all t in I. But this contradicts the given information that x1, . . . ,xn are linearly independent on I.
Therefore W (t0) 6= 0. Since t0 is an arbitrary point, it follows that W (t) 6= 0 for all t ∈ I.

Corollary. The Wronskian of solutions to x′ = Ax is either identically zero or never zero on I.

Corollary. A set of n solutions x1, . . . ,xn to x′ − Ax = 0 is linearly independent on I if and only if their
Wronskian is never zero on I.

Theorem 3 (Representation of Homogeneous Solutions). Let x1, . . . ,xn be n linearly independent solutions
to the homogeneous system

x′(t)−A(t)x(t) = 0 (4)

on the interval I, where A(t) is an n× n matrix function continuous on I. Then every solution to (4) on I
can be expressed in the form

x(t) = c1x1(t) + · · ·+ cnxn(t), (5)

where c1, . . . , cn are constants.

A set of linearly independent solutions {x1, . . . ,xn}, or equivalently, whose Wronskian does not vanish
on I, is called a fundamental solution set for (4). The linear combination in (5), written with arbitrary
constants, is called a general solution to (4).

A fundamental matrix for (4) is

X(t) = [ x1(t) x2 · · · xn(t) ] =


x1,1(t) x1,2(t) · · · x1,n(t)
x2,1(t) x2,2(t) · · · x2,n(t)

...
...

...
xn,1(t) xn,2(t) · · · xn,n(t)

 .

Thus we may express the general solution (5) as

x(t) = X(t)c,

where c =

 c1
...
cn

 is an arbitrary constant vector. Since det X = W (x1, . . . ,xn) is never zero on I, it follows

from Theorem 1 that X(t) is invertible for every t in I. A corresponding matrix differential equation for
x′ −Ax = 0 is X ′ −AX = 0.

Since L(x) = x′ − Ax is a linear operator, the superposition principle for linear systems follows, that
is, if x1 is a solution to L(x) = g1 and x2 is a solution to L(x) = g2, then c1x1 + c2x2 is a solution to
L(x) = c1g1 + c2g2.

The following theorem follows from the superposition principle and the representation theorem for ho-
mogeneous systems.
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Theorem 4. If xp is a particular solution to the nonhomogeneous system

x′(t)−A(t)x(t) = f(t) (6)

on the interval I and {x1, . . . ,xn} is a fundamental solution set on I for the corresponding homogeneous
system x′(t)−A(t)x(t) = 0, then every solution to (6) on I can be expressed in the form

x(t) = c1x1(t) + · · ·+ cnxn(t) + xp(t), (7)

where c1, . . . , cn are constants.

The linear combination in (7) is called a general solution of (6). We may write (7) as x = xp +Xc, where
X is a fundamental matrix for the homogeneous system and c is an arbitrary constant vector.

9.4.1 Approach to Solving Normal Systems

1. To determine a general solution to the n× n homogeneous system x′ −Ax = 0:

(a) Find a fundamental solution set {x1, . . . ,xn} that consists of n linearly independent solutions to
the homogeneous system.

(b) Form the linear combination
x = Xc = c1x1 + · · ·+ cnxn,

where c =

 c1
...
cn

 is any constant vector and X =
[

x1 · · · xn

]
is the fundamental matrix,

to obtain a general solution.

2. To determine a general solution to the nonhomogeneous system x′ −Ax = f :

(a) Find a particular solution xp to the nonhomogeneous system.

(b) Form the sum of the particular solution and the general solution Xc = c1x1 + · · ·+ cnxn to the
corresponding homogeneous system in part 1,

x = xp + Xc = xp + c1x1 + · · ·+ cnxn,

to obtain a general solution to the nonhomogeneous system.

Example 1. Write the given system in the matrix form x′ −Ax = f .

dx

dt
= x + y + z

dy

dt
= 2x− y + 3z

dz

dt
= x + 5z.

Example 2. Rewrite the scalar equation as a first-order system in normal form. Express the system in the
matrix form x′ −Ax = f .

d3y

dt3
− dy

dt
+ y = cos t.

Example 3. Determine whether the given vector functions are linearly independent or linearly dependent
on the interval (−∞,∞).

a)

[
te−t

e−t

]
,

[
e−t

e−t

]
.
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b)

[
sin t
cos t

]
,

[
sin t
sin t

]
,

[
cos t
cos t

]
.

Example 4. The vector functions x1 =

 et

et

et

 ,x2 =

 sin t
cos t
− sin t

 ,x3 =

 − cos t
sin t
cos t

 are solutions to a

system x′(t) − Ax(t) = 0. Determine whether they form a fundamental solution set. If they do, find a
fundamental matrix for the system and give a general solution.
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