9.4 Linear Systems in Normal Form

We say that a system of n linear differential equations is in normal form if it is expressed as

X'(t) = A()x(t) = £(2), (1)
a1 (1) f1(t)

where x(t) = xgz(t) () = f2:(t) , and A(t) = [a;;(t)] is an nxn matrix. The system is homogeneous
) Falt)

when f(t) = 0, otherwise the system is nonhomogeneous. An nth-order linear differential equation

Y (t) + pa—1 Oy D) + -+ po(t)y(t) = g(t) (2)
can be written as a first-order system in normal form using the substitution z;(¢) = ( )y x2(t) =y (£),...,za(t) =
0
0
y™=1D(t). Equation (2) is equivalent to x’(t) = A(t)x(t) + £(t), where x(t JE(t) = . , and
9(t)
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The initial value problem for the normal system (1) is the problem of finding a differentiable vector function
x(t) that satisfies the system on an interval I and also satisfies the initial condition x(tg) = X, where ¢ is
Z1,0
a given point of I and xg = is a given vector.
Ln,0
Theorem 2 (Existence and Uniqueness). If A(t) and £(t) are continuous on an open interval I that contains

the point to, then for any choice of the initial vector xo, there exists a unique solution x(t) on the whole
interval I to the initial value problem

x'(t) — A(t)x(t) = £(t), x(to) = xo.

We may write system (1) as x’ — Ax = f. Let L(x) = x’ — Ax. Then L is a linear operator that maps
vector functions into vector functions.

Definition. The m vector functions X1, ...,X,, are linearly dependent on an interval I if there exist con-
stants c1, ..., Cm, not all zero, such that
axi(t)+ -+ emxm(t) =0 (3)
for allt in I. If the vectors are not linearly dependent, they are said to be linearly independent on I.
T1,1 T1,n
Definition. The Wronskian of n vector functions x1(t) = T is defined to be
Tn,1 Tn,n
the function
z1a(t) wi2(t) o w1a(D)
x21(t)  w22(t) -+ w2a(t)
W(xy,...,X,) = . . .
Tna(t) ana(t) - Tpa(t)



Remark. Vector functions x1(t),...,x,(t) are linearly independent on an interval if their Wronskian is
nonzero at any point in the interval.

Proposition. If vector functions x1(t), ..., x,(t) are independent solutions to a homogeneous system L(x) =
0, that is, X’ — Ax = 0, where A is an n X n matriz of continuous functions, then the Wronskian is never
zero on 1.

Proof. Suppose to the contrary that W (ty) = 0. Then the column vectors x1(tp), - . ., X, (to) in the determi-
nant are linearly dependent. Thus there exist scalars cq,...,c,, not all zero, such that at t = tg

C1X1 (to) +- Can(to) =0.

However, ¢1x1(t) + - - - + ¢ X, (t) and the vector function z(t) = 0 are both solutions to L(x) = 0, and they
agree at the point t5. So these solutions must be identical on I according to the existence and uniqueness
theorem. That is,

axi(t)+ -+ epxn(t) =0
for all t in I. But this contradicts the given information that xi,...,x, are linearly independent on I.
Therefore W () # 0. Since ¢ is an arbitrary point, it follows that W (t) # 0 for all ¢ € I. O

Corollary. The Wronskian of solutions to x' = Ax is either identically zero or never zero on I.

Corollary. A set of n solutions x1,...,%, to x' — Ax = 0 is linearly independent on I if and only if their
Wronskian is never zero on I.

Theorem 3 (Representation of Homogeneous Solutions). Let X1, ...,X, be n linearly independent solutions
to the homogeneous system
X'(t) — A(t)x(t) = 0 (4)
on the interval I, where A(t) is an n X n matriz function continuous on I. Then every solution to (4) on I
can be expressed in the form
x(t) = e1x1(t) + - - - + cnxp (), (5)
where c1,...,c, are constants.

A set of linearly independent solutions {xi,...,x,}, or equivalently, whose Wronskian does not vanish
on I, is called a fundamental solution set for (4). The linear combination in (5), written with arbitrary
constants, is called a general solution to (4).

A fundamental matriz for (4) is

151’1(15) (Elvg(t) xl,n(t)
wa1(t) waa(t) oo x2n(t)
X)) =[x(t) %2 -+ xu(t) | = : . :
l’n’l(t) xn,g (t) et wn,n (t)
Thus we may express the general solution (5) as
x(t) = X(t)c,
C1
where ¢ = is an arbitrary constant vector. Since det X = W(xy,...,X,) is never zero on I, it follows
Cn

from Theorem 1 that X (¢) is invertible for every ¢ in I. A corresponding matriz differential equation for
x —Ax=0is X' — AX =0.

Since L(x) = x’ — Ax is a linear operator, the superposition principle for linear systems follows, that
is, if x; is a solution to L(x) = g; and x5 is a solution to L(x) = g, then ¢1x1 + coxy is a solution to
L(x) = c181 + c282.

The following theorem follows from the superposition principle and the representation theorem for ho-
mogeneous systems.



Theorem 4. If x, is a particular solution to the nonhomogeneous system
x/(t) — A(t)x(t) = £(t) (6)

on the interval I and {xi,...,X,} s a fundamental solution set on I for the corresponding homogeneous
system x'(t) — A(t)x(t) = 0, then every solution to (6) on I can be expressed in the form

x(t) = e1xq(t) + -+ enxn(t) + x(1), (7)
where c1,...,cy are constants.

The linear combination in (7) is called a general solution of (6). We may write (7) as x = x, + X ¢, where
X is a fundamental matrix for the homogeneous system and c is an arbitrary constant vector.

9.4.1 Approach to Solving Normal Systems

1. To determine a general solution to the n x n homogeneous system x’ — Ax = 0:
(a) Find a fundamental solution set {x1,...,%,} that consists of n linearly independent solutions to
the homogeneous system.
(b) Form the linear combination
x=Xc= c1X1 + - +Cnxn7
C1
where ¢ = is any constant vector and X = [ X1 0 Xp ] is the fundamental matrix,

Cn
to obtain a general solution.

2. To determine a general solution to the nonhomogeneous system x’ — Ax = f:

(a) Find a particular solution x, to the nonhomogeneous system.

(b) Form the sum of the particular solution and the general solution Xc¢ = ¢1x1 + - -+ + ¢, X, to the
corresponding homogeneous system in part 1,

X=X, +Xc=X,+c1X1 + -+ cpXyp,
to obtain a general solution to the nonhomogeneous system.

Example 1. Write the given system in the matriz form x' — Ax = f.
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Example 2. Rewrite the scalar equation as a first-order system in normal form. Ezpress the system in the
matriz form x' — Ax = f.

Example 3. Determine whether the given vector functions are linearly independent or linearly dependent
on the interval (—oo, c0).
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Example 4. The vector functions x; = | e’ | ,xg3 = cost | ,x3 = sint | are solutions to a
et —sint cost

system x'(t) — Ax(t) = 0. Determine whether they form a fundamental solution set. If they do, find a
fundamental matriz for the system and give a general solution.



