7 Symmetric Matrices

7.1 Diagonalization of Symmetric Matrices

A symmetric matrix is a matrix A such that $A^T = A$. Such a matrix is necessarily square. Its main diagonal entries are arbitrary, but its other entries occur in pairs, on opposite sides of the main diagonal.

Example 1. Determine which matrix is symmetric.

a) $\begin{bmatrix} 3 & -5 \\ -5 & -3 \end{bmatrix}$ b) $\begin{bmatrix} 0 & 8 & 3 \\ 8 & 0 & -4 \\ 3 & 2 & 0 \end{bmatrix}$ c) $\begin{bmatrix} 1 & 2 & 2 & 1 \\ 2 & 2 & 1 & 2 \\ 2 & 2 & 1 & 2 \end{bmatrix}$

Theorem 1. If A is symmetric, then any two eigenvectors from different eigenspaces are orthogonal.

Proof. Let \mathbf{v}_1 and \mathbf{v}_2 be eigenvectors that correspond to distinct eigenvalues, say λ_1 and λ_2 . To show that $\mathbf{v}_1 \cdot \mathbf{v}_2 = 0$, compute

$$\lambda_1 \mathbf{v}_1 \cdot \mathbf{v}_2 = (\lambda_1 \mathbf{v}_1)^T \mathbf{v}_2$$
$$= (A \mathbf{v}_1)^T \mathbf{v}_2$$
$$= (\mathbf{v}_1^T A^T) \mathbf{v}_2$$
$$= \mathbf{v}_1^T (A \mathbf{v}_2)$$
$$= \mathbf{v}_1^T (\lambda_2 \mathbf{v}_2)$$
$$= \lambda_2 \mathbf{v}_1^T \mathbf{v}_2$$
$$= \lambda_2 \mathbf{v}_1 \cdot \mathbf{v}_2.$$

Hence $(\lambda_1 - \lambda_2)\mathbf{v}_1 \cdot \mathbf{v}_2 = 0$. But $\lambda_1 - \lambda_2 \neq 0$, so $\mathbf{v}_1 \cdot \mathbf{v}_2 = 0$.

An $n \times n$ matrix A is said to be *orthogonally diagonalizable* if there are an orthogonal matrix P (with $P^{-1} = P^T$) and a diagonal matrix D such that

$$A = PDP^T = PDP^{-1}. (1)$$

Such a diagonalization requires n linearly independent and orthonormal eigenvectors. When is this possible? If A is orthogonally diagonalizable as in (1), then

$$A^T = (PDP^T)^{=} P^{TT} D^T P^T = PDP^T = A.$$

Thus A is symmetric!

Theorem 2. An $n \times n$ matrix A is orthogonally diagonalizable if and only if A is a symmetric matrix.

The set of eigenvalues of a matrix A is sometimes called the *spectrum* of A.

Theorem 3 (The Spectral Theorem for Symmetric Matrices). An $n \times n$ symmetric matrix A has the following properties:

1. A has n real eigenvalues, counting multiplicities.

- 2. The dimension of the eigenspace for each eigenvalue λ equals the multiplicity of λ as a root of the characteristic equation.
- 3. The eigenspaces are mutually orthogonal, in the sense that eigenvectors corresponding to different eigenvalues are orthogonal.
- 4. A is orthogonally diagonalizable.

7.1.1 Spectral Decomposition

Suppose $A = PDP^{-1}$, where the columns of P are orthonormal eigenvectors $\mathbf{u}_1, \ldots, \mathbf{u}_n$ of A and the corresponding eigenvalues $\lambda_1, \ldots, \lambda_n$ are in the diagonal matrix D. Then, since $P^{-1} = P^T$,

$$A = PDP^{T}$$

$$= [\mathbf{u}_{1} \cdots \mathbf{u}_{n}] \begin{bmatrix} \lambda_{1} & 0 \\ & \ddots & \\ 0 & & \lambda_{n} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{1}^{T} \\ \vdots \\ \mathbf{u}_{n}^{T} \end{bmatrix}$$

$$= [\lambda_{1}\mathbf{u}_{1} \cdots \lambda_{n}\mathbf{u}_{n}] \begin{bmatrix} \mathbf{u}_{1}^{T} \\ \vdots \\ \mathbf{u}_{n}^{T} \end{bmatrix}.$$

Using the column-row expansion of a product, we can write

$$A = \lambda_1 \mathbf{u}_1 \mathbf{u}_1^T + \dots + \lambda_n \mathbf{u}_n \mathbf{u}_n^T.$$
⁽²⁾

This representation of A is called a *spectral decomposition* of A because it breaks up A into pieces determined by the spectrum (eigenvalues) of A. Each term in (2) is an $n \times n$ matrix of rank 1. For example, every column of $\lambda_1 \mathbf{u}_1 \mathbf{u}_1^T$ is a multiple of \mathbf{u}_1 . Furthermore, each matrix $\mathbf{u}_j \mathbf{u}_j^T$ is a *projection matrix* in the sense that for each $\mathbf{x} \in \mathbb{R}^n$, the vector $(\mathbf{u}_j \mathbf{u}_j^T)\mathbf{x}$ is the orthogonal projection of \mathbf{x} onto the subspace spanned by \mathbf{u}_j .

Example 2. Let \mathbf{u} be a unit vector in \mathbb{R}^n , and let $B = \mathbf{u}\mathbf{u}^T$.

a) Given any $\mathbf{x} \in \mathbb{R}^n$, compute $B\mathbf{x}$ and show that $B\mathbf{x}$ is the orthogonal projection of \mathbf{x} onto \mathbf{u} .

b) Show that B is a symmetric matrix and $B^2 = B$.

c) Show that \mathbf{u} is an eigenvector of B. What is the corresponding eigenvalue?

Example 3. Find the inverse of each orthogonal matrix.

$$a) \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$b) \begin{bmatrix} 0.5 & 0.5 & -0.5 & -0.5 \\ 0.5 & 0.5 & 0.5 & 0.5 \\ 0.5 & -0.5 & -0.5 & 0.5 \\ 0.5 & -0.5 & 0.5 & -0.5 \end{bmatrix}$$

Example 4. Orthogonally diagonalize the matrix, giving an orthogonal matrix P and a diagonal matrix D. The eigenvalues are -3, -6, 9.

$$\begin{bmatrix} 1 & -6 & 4 \\ -6 & 2 & -2 \\ 4 & -2 & -3 \end{bmatrix}$$