
7 Symmetric Matrices

7.1 Diagonalization of Symmetric Matrices

A symmetric matrix is a matrix A such that AT = A. Such a matrix is necessarily square. Its main diagonal
entries are arbitrary, but its other entries occur in pairs, on opposite sides of the main diagonal.

Example 1. Determine which matrix is symmetric.

a)

[
3 −5
−5 −3

]

b)

 0 8 3
8 0 −4
3 2 0



c)

 1 2 2 1
2 2 2 1
2 2 1 2


Theorem 1. If A is symmetric, then any two eigenvectors from different eigenspaces are orthogonal.

Proof. Let v1 and v2 be eigenvectors that correspond to distinct eigenvalues, say λ1 and λ2. To show that
v1 · v2 = 0, compute

λ1v1 · v2 = (λ1v1)
Tv2

= (Av1)
Tv2

= (vT
1 A

T )v2

= vT
1 (Av2)

= vT
1 (λ2v2)

= λ2v
T
1 v2

= λ2v · v2.

Hence (λ1 − λ2)v1 · v2 = 0. But λ1 − λ2 6= 0, so v1 · v2 = 0.

An n × n matrix A is said to be orthogonally diagonalizable if there are an orthogonal matrix P (with
P−1 = PT ) and a diagonal matrix D such that

A = PDPT = PDP−1. (1)

Such a diagonalization requires n linearly independent and orthonormal eigenvectors. When is this possible?
If A is orthogonally diagonalizable as in (1), then

AT = (PDPT )=PTTDTPT = PDPT = A.

Thus A is symmetric!

Theorem 2. An n× n matrix A is orthogonally diagonalizable if and only if A is a symmetric matrix.

The set of eigenvalues of a matrix A is sometimes called the spectrum of A.

Theorem 3 (The Spectral Theorem for Symmetric Matrices). An n×n symmetric matrix A has the following
properties:

1. A has n real eigenvalues, counting multiplicities.
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2. The dimension of the eigenspace for each eigenvalue λ equals the multiplicity of λ as a root of the
characteristic equation.

3. The eigenspaces are mutually orthogonal, in the sense that eigenvectors corresponding to different
eigenvalues are orthogonal.

4. A is orthogonally diagonalizable.

7.1.1 Spectral Decomposition

Suppose A = PDP−1, where the columns of P are orthonormal eigenvectors u1, . . . ,un of A and the
corresponding eigenvalues λ1, . . . , λn are in the diagonal matrix D. Then, since P−1 = PT ,

A = PDPT

= [u1 · · · un]

 λ1 0
. . .

0 λn


 uT

1
...
uT
n


= [λ1u1 · · · λnun]

 uT
1
...
uT
n

 .
Using the column-row expansion of a product, we can write

A = λ1u1u
T
1 + · · ·+ λnunu

T
n . (2)

This representation of A is called a spectral decomposition of A because it breaks up A into pieces determined
by the spectrum (eigenvalues) of A. Each term in (2) is an n × n matrix of rank 1. For example, every
column of λ1u1u

T
1 is a multiple of u1. Furthermore, each matrix uju

T
j is a projection matrix in the sense

that for each x ∈ Rn, the vector (uju
T
j )x is the orthogonal projection of x onto the subspace spanned by

uj .

Example 2. Let u be a unit vector in Rn, and let B = uuT .

a) Given any x ∈ Rn, compute Bx and show that Bx is the orthogonal projection of x onto u.

b) Show that B is a symmetric matrix and B2 = B.

c) Show that u is an eigenvector of B. What is the corresponding eigenvalue?

Example 3. Find the inverse of each orthogonal matrix.

a)

[
1 1
1 −1

]

b)


0.5 0.5 −0.5 −0.5
0.5 0.5 0.5 0.5
0.5 −0.5 −0.5 0.5
0.5 −0.5 0.5 −0.5


Example 4. Orthogonally diagonalize the matrix, giving an orthogonal matrix P and a diagonal matrix D.
The eigenvalues are −3,−6, 9.  1 −6 4

−6 2 −2
4 −2 −3


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