6.5 Least-Squares Problems

For an inconsistent system $A\mathbf{x} = \mathbf{b}$, where a solution does not exist, the best we can do is to find an \mathbf{x} that makes $A\mathbf{x}$ as close as possible to \mathbf{b} . By the Best Approximation theorem, we have:

Definition. If A is $m \times n$ and $\mathbf{b} \in \mathbb{R}^n$, a least-squares solution of $A\mathbf{x} = \mathbf{b}$ is a vector $\hat{\mathbf{x}} \in \mathbb{R}^n$ such that

$$\|\mathbf{b} - A\hat{\mathbf{x}}\| < \|\mathbf{b} - A\mathbf{x}\|$$

for all $\mathbf{x} \in \mathbb{R}^n$.

The adjective "least-squares" arises from the fact that $\|\mathbf{b} - A\hat{\mathbf{x}}\|$ is the square root of a sum of squares. The most important aspect of the least-squares problem is that no matter what \mathbf{x} we select, the vector $A\mathbf{x}$ will necessarily be in Col A. So we seek a vector \mathbf{x} that makes $A\mathbf{x}$ the closest point in Col A to \mathbf{b} .

Given A and b, we apply the Best Approximation theorem to the subspace Col A. Let

$$\hat{\mathbf{b}} = \operatorname{proj}_{\operatorname{Col}} {}_{A}\mathbf{b}.$$

Because $\hat{\mathbf{b}}$ is in the column space of A, the equation $A\mathbf{x} = \hat{\mathbf{b}}$ is consistent, and there is an $\hat{\mathbf{x}} \in \mathbb{R}^n$ such that

$$A\hat{\mathbf{x}} = \hat{\mathbf{b}}.\tag{1}$$

Since $\hat{\mathbf{b}}$ is the closest point in Col A to \mathbf{b} , a vector $\hat{\mathbf{x}}$ is a least-squares solution of $A\mathbf{x} = \mathbf{b}$ if and only if $\hat{\mathbf{x}}$ satisfies (1). Such an $\hat{\mathbf{x}} \in \mathbb{R}^n$ is a list of weights that will build $\hat{\mathbf{b}}$ out of the columns of A.

Suppose $\hat{\mathbf{x}}$ satisfies (1). By the Orthogonal Decomposition theorem, the projection $\hat{\mathbf{b}}$ has the property that $\hat{\mathbf{b}} - \hat{\mathbf{b}}$ is orthogonal to Col A, so $\hat{\mathbf{b}} - A\hat{\mathbf{x}}$ is orthogonal to each column of A. If \mathbf{a}_j is any column of A, then $\mathbf{a}_j \cdot (\hat{\mathbf{b}} - A\hat{\mathbf{x}}) = 0$, and $\mathbf{a}_j^T(\hat{\mathbf{b}} - A\hat{\mathbf{x}}) = 0$. Since each \mathbf{a}_j is a row of A^T ,

$$A^{T}(\mathbf{b} - A\hat{\mathbf{x}}) = \mathbf{0}. (2)$$

Thus

$$A^{T}\mathbf{b} - A^{T}A\hat{\mathbf{x}} = \mathbf{0}$$
$$\therefore A^{T}A\hat{\mathbf{x}} = A^{T}\mathbf{b}.$$

These calculations show that each least-squares solution of $A\mathbf{x} = \mathbf{b}$ satisfies the equation

$$A^T A \mathbf{x} = A^T \mathbf{b}. \tag{3}$$

The matrix equation (3) represents a system of equations called the *normal equations* for $A\mathbf{x} = \mathbf{b}$. A solution of (3) is often denoted by $\hat{\mathbf{x}}$.

Theorem 13. The set of least-squares solutions of $A\mathbf{x} = \mathbf{b}$ coincides with the nonempty set of solutions of the normal equations $A^T A \mathbf{x} = A^T \mathbf{b}$.

Theorem 14. Let A be an $m \times n$ matrix. The following are equivalent:

- 1. The equation $A\mathbf{x} = \mathbf{b}$ has a unique least-squares solution for each $\mathbf{b} \in \mathbb{R}^m$.
- 2. The columns of A are linearly independent.
- 3. The matrix $A^T A$ is invertible.

When these statements are true, the least-squares solution $\hat{\mathbf{x}}$ is given by

$$\hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b} \tag{4}$$

The distance between **b** and $A\hat{\mathbf{x}}$ is called the least-squares error of this approximation.

Theorem 15. Given an $m \times n$ matrix A with linearly independent columns, let A = QR be a QR factorization of A. Then, for each $\mathbf{b} \in \mathbb{R}^m$, the equation $A\mathbf{x} = \mathbf{b}$ has a unique solution, given by

$$\hat{\mathbf{x}} = R^{-1} Q^T \mathbf{b}. \tag{5}$$

Example 1. Find (a) the orthogonal projection of $\mathbf{b} = \begin{bmatrix} 2 \\ 5 \\ 6 \\ 6 \end{bmatrix}$ onto Col A and (b) a least-squares solution

of
$$A\mathbf{x} = \mathbf{b}$$
, when $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \\ -1 & 1 & -1 \end{bmatrix}$.