6.4 The Gram-Schmidt Procedure

Now that we understand the usefulness of orthonormal bases, how do we go about finding them? For
example, does P,,,, with inner product given by integration on [0, 1] have an orthonormal basis? As we will
see, the next result will lead to answers to these questions. The algorithm used in the next proof is called
the Gram-Schmidt procedure. It gives a method for turning a linearly independent list into an orthonormal
list with the same span as the original list.

Theorem 11 (Gram-Schmidt). If {x1,...,X,} is a linearly independent list of vectors in W, then there
exists an orthogonal list {v1,...,v,} of vectors in W such that

Span{xi,...,x;} = Span{vi,...,v;} (1)

for g =1,...,p. More specifically,
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Then {v1,...,v,} is an orthogonal basis for V. Normalizing each v; results in an orthonormal basis.

Proof. For 1 < k <p, let W, = Span{xy,...,Xx}. Set vi = x3, so that Span{vy} = Span{x;}.
Suppose for some k < p, we have constructed vy,..., vy so that {vy,...,vg} is an orthogonal basis for
Wy.. Define

Vit1l = X1 — Py Xpq1.

By the Orthogonal Decomposition Theorem, v is orthogonal to Wj. Note that Py, xx11 is in Wy, and
hence also in Wy 1. Since xpy1 is in Wy41, so is viy1, because Wi41 is a subspace and is closed under
subtraction. Furthermore, viy1 # 0 because xj1 is not in Wy, = Span{xy,...,x;}. Hence {vi,...,viy1}
is an orthogonal set of nonzero vectors in the (k + 1)-dimensional space Wy11. By the Basis Theorem in
§4.5, this set is an orthogonal basis for Wy41. Hence Wy 1 = Span{vy,...,vii1}.

When k + 1 = p, the procedure stops. We may form an orthonormal basis from an orthogonal basis by
simply normalizing each vector in the orthogonal basis after finishing Gram-Schmidt. O

Corollary. Every finite-dimensional inner-product space has an orthonormal basis.

Proof. Choose a basis of V. Apply the Gram-Schmidt procedure to it, producing an orthonormal list. This
orthonormal list is linearly independent and its span equals V. Thus it is an orthonormal basis of V. O

Corollary. Every orthonormal list of vectors in V can be extended to an orthonormal basis of V.

Proof. Suppose {ei,...,en} is an orthonormal list of vectors in V. Then {eq,...,e,,} is linearly indepen-
dent, and hence it can be extended to a basis {e1,...,€m,V1,...,v,} of V. Now apply the Gram-Schmidt
procedure to {e1,...,em,V1,...,V,}, producing an orthonormal list

{e1,...,em,f1,.. ., £ }; (2)

here the Gram-Schmidt procedure leaves the first m vectors unchanged because they are already orthonormal.
Clearly (2) is an orthonormal basis of V because it is linearly independent and its span equals V. Hence we
have our extension of {ey,..., e} to an orthonormal basis of V. O



Theorem 12 (The QR Factorization). If A is an m X n matriz with linearly independent columns, then
A can be factored as A = QR, where Q is an m X n matric whose columns form an orthonormal basis for
Col A and R is an n X n upper-triangular invertible matriz with positive entries on its diagonal.
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Example 1. Use Gram-Schmidt procedure to produce an orthonormal basis for W = Span -4 |, 14
5 =7

Example 2. As an illustration of this procedure, consider the problem of finding a polynomial u with real
coefficients and degree at most 5 that on the interval [—7,w] approximates sinx as well as possible, in the
sense that

™

/ |sinz — u(z)|*dzx
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is as small as possible. To solve this problem, let C|—m, ] denote the real vector space of continuous real-
valued functions on [—m, | with inner product

o) - [ " ba)g(x)de. (3)

—T

Let v € Cl—m, 7| be the function defined by v(x) = sinx. Let U denote the subspace of C|—n, x| consisting of
the polynomials with real coefficients and degree at most 5. Our problem can now be reformulated as follows:
find u € U such that ||[v —ul| is as small as possible.

Solution. To compute the solution to our approximation problem, first apply the Gram-Schmidt procedure,
using the inner product given by (3) to the basis {1, x, 2% 23 2% 25} of U, producing an orthonormal basis

{e1,e2,e3,€e4,€e5,e5} of U. Then, again using the inner product given by (3), compute Pyv using
Pyv={(v,e1)e; + -+ (v,en)en
with m = 6. Doing this computation shows that Pyv is the function
0.987862x — 0.1552712° 4 0.005643122°, (4)

where the 7’s that appear in the exact answer have been replaced with a good decimal approximation.

By The Best Approximation Theorem, the polynomial above should be about as good an approximation
to sinx on [—7, 7] as is possible using polynomials of degree at most 5. To see how good this approximation
is, we may compare the graphs of both sinx and our approximation (4) over the interval [—, 7].

Our approximation (4) is so accurate that the two graphs are almost identical - our eyes may see only
one graph!

Another well-known approximation to sin z by a polynomial of degree 5 is given by the Taylor polynomial
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To see how good this approximation is, we may compare the graphs of both sinx and the Taylor polynomial
(5) over the interval [—m, 7).

The Taylor polynomial is an excellent approximation to sinz for x near 0. But for |z| > 2, the Taylor
polynomial is not so accurate, especially compared to (4). For example, taking = 3, our approximation
(4) estimates sin3 with an error of about 0.001, but the Taylor series (5) estimates sin3 with an error of
about 0.4. Thus at x = 3, the error in the Taylor series is hundreds of times larger than the error given by
(4). Linear algebra has helped us discover an approximation to sinz that improves upon what we learned
in calculus! O



