
6.3 Orthogonal Projections

Suppose u,v ∈ V . We would like to write u as a scalar multiple of v plus a vector w orthogonal to v. To
discover how to write u as a scalar multiple of v plus a vector orthogonal to v, let a ∈ R denote a scalar.
Then

u = av + (u− av).

Thus we need to choose a so that v is orthogonal to (u− av). In other words, we want

0 = 〈u− av,v〉 = 〈u,v〉 − a‖v‖2.

The equation above shows that we should choose a to be 〈u,v〉/‖v‖2, provided that v 6= 0. Making this
choice of a, we can write

u =
〈u,v〉
‖v‖2

v +

(
u− 〈u,v〉

‖v‖2
v

)
. (1)

It is easy to verify that the equation above writes u as a scalar multiple of v plus a vector orthogonal to v.
Suppose U is a subspace of V . Each vector v ∈ V can be written uniquely in the form

v = u + w,

where u ∈ U and w ∈ U⊥. We use this decomposition to define an operator on V , denoted PU (in the
textbook, projU ), called the orthogonal projection of V onto U . For v ∈ V , we define PUv to be the vector
u in the decomposition above.

It is easy to verify that PU is an operator that has the following properties:

• range PU = U ;

• null PU = U⊥;

• v − PUv ∈ U⊥ for every v ∈ V ;

• P 2
U = PU ;

• ‖PUv‖ ≤ ‖v‖ for every v ∈ V .

Theorem 8 (The Orthogonal Decomposition Theorem). Let W be a subspace of V . Then each y ∈ V can
be written uniquely in the form

y = ŷ + z (2)

where ŷ is in W and z is in W⊥. In fact, if {u1, . . . ,up} is any orthogonal basis for W , then

ŷ =
〈y,u1〉
〈u1,u1〉

u1 + · · ·+ 〈y,up〉
〈up,up〉

up (3)

and z = y − ŷ.

If y ∈ W = Span{u1, . . . ,up}, then PWy = y. Furthermore, if {e1, . . . , em} is an orthonormal basis of W ,
then

PWy = 〈y, e1〉e1 + · · ·+ 〈y, em〉em (4)

for every y ∈ V .

Theorem 9 (The Best Approximation Theorem). Suppose U is a subspace of V and v ∈ V . Then

‖v − PUv‖ ≤ ‖v − u‖

for every u ∈ U . Furthermore, if u ∈ U and the inequality above is an equality, then u = PUv.
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In other words, PUv is the closest point in U to v. The vector PUv is called the best approximation to
v by elements of U .

Proof. Suppose u ∈ U . Then

‖v − PUv‖2 ≤ ‖v − PUv‖2 + ‖PUv − u‖2 (5)

= ‖(v − PUv) + (PUv − u)‖2 (6)

= ‖v − u‖2, (7)

where (5) comes from the Pythagorean Theorem, which applies because v − PUv ∈ U⊥ and PUv − u ∈ U .
Taking square roots give the desired inequality.

Our inequality is an equality if and only if (4) is an equality, which happens if and only if ‖PUv−u‖ = 0,
which happens if and only if u = PUv.

The Best Approximation theorem is often combined with the formula (4) to compute explicit solutions
to minimization problems.

Theorem 10. If {u1, . . . ,up} is an orthonormal basis for a subspace W of Rn, then If U = [u1 · · ·up],
then

PWy = UUTy for all y ∈ Rn. (8)

Example 1. Let W = Span{u1,u2,u3} where u1 =


1
1
0
−1

 ,u2 =


1
0
1
1

 ,u3 =


0
−1

1
−1

. Write y =


3
4
5
6

 as the sum of a vector in W and a vector orthogonal to W .

Example 2. Find the closest point to y =


3
−1

1
13

 in the subspace W spanned by v1 =


1
−2
−1

2

 and

v2 =


−4

1
0
3

.
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