
6 Orthogonality and Least Squares

6.1 Inner Product, Length, and Orthogonality

Recall that we may think of vectors in R2 and R3 as arrows with initial point at the origin. The length
of a vector x in R2 or R3 is called the norm of x, denoted ‖x‖. Thus for x = (x1, x2) ∈ R2, we have

‖x‖ =
√
x2
1 + x2

2. Similarly, for x =

 x1

x2

x3

 ∈ R3, we have ‖x‖ =
√

x2
1 + x2

2 + x2
3. Even though we

cannot draw pictures in higher dimensions, the generalization to Rn is obvious; we define the norm of

x =

 x1

...
xn

 ∈ Rn by

‖x‖ =
√
x2
1 + · · ·+ x2

n.

The norm is not linear on Rn. To inject linearity into the discussion, we introduce the dot product.
If u and v are vectors in Rn, then we regard u and v as n × 1 matrices. The transpose of u is a 1 × n

matrix uT . Then the product uTv is a 1× 1 matrix, which we write as a single number (a scalar) without
brackets.

For x,y ∈ Rn, the dot product of x and y, denoted x · y, is defined by

x · y = x1y1 + · · ·+ xnyn,

where x = (x1, . . . , xn) and y = (y1, . . . , yn). Note that the dot product of two vectors in Rn is a number,
not a vector. Obviously, x · x = ‖x‖2 for all x ∈ Rn. In particular, x · x ≥ 0 for all x ∈ Rn, with equality if
and only if x = 0. Also, if y ∈ Rn is fixed, then clearly tha map from Rn to R that sends x ∈ Rn to xy is
linear.

An inner product is a generalization of the dot product. An inner product on V is a function that takes
each ordered pair (u,v) of elements in V to a number 〈u,v〉 ∈ R and has the following properties (presented
in the textbook as Theorem 1):

positivity 〈v,v〉 ≥ 0 for all v ∈ V

definiteness 〈v,v〉 = 0⇐⇒ v = 0

additivity 〈u + v,w〉 = 〈u,w〉+ 〈v,w〉 for all u,v,w ∈ V

homogeneity 〈av,w〉 = a〈v,w〉 for all a ∈ R and all v,w ∈ V

symmetry 〈v,w〉 = 〈w,v〉 for all v,w ∈ V

An inner product space is a vector space V along with an inner product on V .
The most important example of an inner product space is Rn, which is the dot product. As another

example of an inner product space, consider the vector space Pm of all polynomials with coefficients in R
and degree at most m. We can define an inner product on Pm by

〈p,q〉 =

∫ 1

0

p(x)q(x)dx. (1)

In the definition of an inner product, the conditions of additivity and homogeneity can be combined into a
requirement of linearity. More precisely, for each fixed w ∈ V , the function that takes v to 〈v,w〉 is a linear
map from V to R. Becauce every linear map takes 0 to 0, we must have

〈0,w〉 = 0

1



for every w ∈ V . Thus by the symmetry property we also have

〈w,0〉 = 0.

For v ∈ V , we define the norm of v, denoted ‖v‖, by

‖v‖ =
√
〈v,v〉

An example is the norm defined for Rn at the beginning of this section. As another example, if p ∈ Pm with
inner product given by (1), then

‖p‖ =

√∫ 1

0

|p(x)|2dx.

Note that ‖v‖ = 0 if and only if v = 0, because 〈v,v〉 = 0 if and only if v = 0. Another property of norm
is that ‖av‖ = |a|‖v‖ for all a ∈ R and all v ∈ V . Here’s the proof:

‖av‖2 = 〈av, av〉
= a〈v, av〉
= aa〈v,v〉
= |a|2‖v‖2;

taking square roots now gives the desired equality. This proof illustrates a general principle: working with
norms squared is usually easier than working directly with norms.

Two vectors u,v ∈ V are said to be orthogonal if 〈u,v〉 = 0. Note that the order of the vectors does not
matter because of symmetry. Clearly 0 is orthogonal to every vector. Furthermore, 0 is the only vector that
is orthogonal to itself.

The next theorem is over 2,500 years old.

Theorem 2 (Pythagorean Theorem). If u,v are orthogonal vectors in V , then

‖u + v‖2 = ‖u‖2 + ‖v‖2. (2)

Proof. Suppose that u,v are orthogonal vectors in V . Then

‖u + v‖2 = 〈u + v,u + v〉
= ‖u‖2 + ‖v‖2 + 〈u,v〉+ 〈v,u〉
= ‖u‖2 + ‖v‖2,

as desired.

Note that the converse of Pythagorean Theorem holds in real inner-product spaces, but not in complex
inner-product spaces, where 〈u,v〉+ 〈v,u〉 = 2Re〈u,v〉.

If U is a subset of V , then the orthogonal complement of U , denoted U⊥, is the set of all vectors in V
that are orthogonal to every vector in U :

U⊥ = {v ∈ V : 〈v,u〉 = 0 for all u ∈ U}.

We may verify that U⊥ is always a subspace of V , that V ⊥ = {0}, and that {0}⊥ = V . Also note that if
U1 ⊂ U2, then U⊥

1 ⊃ U⊥
2 .

Definition. For u,v ∈ Rn, the distance between u and v, denoted dist(u,v), is the length of the vector
u− v:

dist(u,v) = ‖u− v‖.
Theorem 3. Let A be an m×n matrix. The orthogonal complement of the row space of A is the null space
of A, and the orthogonal complement of the column space of A is the null spac of AT :

(Row A)⊥ = Nul A and (Col A)⊥ = Nul AT

Examples.
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