## 5.4 Eigenvectors and Linear Transformations

Suppose  $T: V \to W$  is a linear map with an  $m \times n$  matrix A. Choose ordered bases  $\mathcal{B}$  for n-dimensional vector space V and  $\mathcal{C}$  for m-dimensional vector space W. Given every vector  $\mathbf{x} \in V$ , the coordinate vector  $[\mathbf{x}]_{\mathcal{B}}$  is in  $\mathbb{R}^n$ , and the coordinate vector of its image,  $[T\mathbf{x}]_{\mathcal{C}}$ , is in  $\mathbb{R}^m$ . The connection between  $[\mathbf{x}]_{\mathcal{B}}$  and

 $[T\mathbf{x}]_{\mathcal{C}}$  is easy to find. Let  $\{\mathbf{b}_1, \dots, \mathbf{b}_n\}$  be the basis  $\mathcal{B}$  for V. If  $\mathbf{x} = r_1\mathbf{b}_1 + \dots + r_n\mathbf{b}_n$ , then  $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} r_1 \\ \vdots \\ r_n \end{bmatrix}$ 

and

$$T\mathbf{x} = T(r_1\mathbf{b}_1 + \dots + r_n\mathbf{b}_n) = r_1T\mathbf{b}_1 + \dots + r_nT\mathbf{b}_n \tag{1}$$

because T is linear. Now, since the coordinate mapping from W to  $\mathbb{R}^m$  is linear, equation (1) leads to

$$[T\mathbf{x}]_{\mathcal{C}} = r_1[T\mathbf{b}_1]_{\mathcal{C}} + \dots + r_n[T\mathbf{b}_n]_{\mathcal{C}}$$
<sup>(2)</sup>

Since the coordinate vectors are in  $\mathbb{R}^m$ , we may write the vector equation (2) as a matrix equation:

$$[T\mathbf{x}]_{\mathcal{C}} = M[\mathbf{x}]_{\mathcal{B}} \tag{3}$$

where

$$M = \begin{bmatrix} [T\mathbf{b}_1]_{\mathcal{C}} & \cdots & [T\mathbf{b}_n]_{\mathcal{C}} \end{bmatrix}.$$
(4)

The matrix M is a matrix representation of T, called the matrix for T relative to the bases  $\mathcal{B}$  and  $\mathcal{C}$ .



In the common case where :  $V \to V$  and the bases  $\mathcal{B} = \mathcal{C}$ , then the matrix M in (4) is called the matrix for T relative to  $\mathcal{B}$ , or simply the  $\mathcal{B}$ -matrix for T, and is denoted by  $[T]_{\mathcal{B}}$ .

**Theorem 8** (Diagonal Matrix Representation). Suppose  $A = PDP^{-1}$ , where D is a diagonal  $n \times n$  matrix. If  $\mathcal{B}$  is the basis for  $\mathbb{R}^n$  formed by the columns of P, then D is the  $\mathcal{B}$ -matrix for the transformation  $\mathbf{x} \mapsto A\mathbf{x}$ .

**Example 1.** Let  $\mathcal{B} = {\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3}$  be a basis for a vector space V and  $T : V \to \mathbb{R}^2$  be a linear transformation with the property that

$$T(x_1\mathbf{b}_1 + x_2\mathbf{b}_2 + x_3\mathbf{b}_3) = \begin{bmatrix} 2x_1 - 4x_2 + 5x_3 \\ -x_2 + 3x_3 \end{bmatrix}$$

Find the matrix for T relative to  $\mathcal{B}$  and the standard basis for  $\mathbb{R}^2$ .

**Example 2.** Let  $T : \mathbb{P}_2 \to \mathbb{P}_4$  be the transformation that maps a polynomial  $\mathbf{p}(t)$  into the polynomial  $\mathbf{p}(t) + t^2 \mathbf{p}(t)$ .

- a) Find the image of  $\mathbf{p}(t) = 2 t + t^2$ .
- b) Show that T is a linear map.

c) Find the matrix for T relative to the bases  $\{1, t, t^2\}$  and  $\{1, t, t^2, t^3, t^4\}$ .

**Example 3.** Define  $T : \mathbb{R}^2 \to \mathbb{R}^2$  by  $T\mathbf{x} = A\mathbf{x}$ . Find a basis  $\mathcal{B}$  for  $\mathbb{R}^2$  with the property that  $[T]_{\mathcal{B}}$  is diagonal.

$$A = \left[ \begin{array}{cc} 2 & -6 \\ -1 & 3 \end{array} \right].$$