5.2 The Characteristic Equation

Let A be an n x n matrix. Let U be any echelon form obtained from A by row replacements and row
interchanges (without scaling). Let  be the number of such row interchanges. The determinant of A is the

product of the diagonal entries of U times (—1)". If A is invertible, then every diagonal entry is a pivot

because A ~ I,,. Otherwise, at least one of the diagonal entries in U is zero and hence the product of the
diagonal entries in U is zero. Therefore,

(=1)" - (product of pivots in U), when A is invertible
0, when A is not invertible

det A = { (1)

Theorem (IMT Continued). Let A be an n X n matriz. Then A is invertible if and only if
19. The number 0 is not an eigenvalue of A.
20. The determinant of A is not zero.
Theorem 3 (Properties of Determinants). Let A and B be n X n matrices.
1. A is invertible if and only if det A # 0.
det AB = (det A)(det B).
det AT = det A.

If A is triangular, then det A is the product of the entries on the main diagonal of A.

A row replacement operation on A does not change the determinant. A row interchange changes the
sign of the determinant. A row scaling also scales the determinant by the same factor.

The Properties of Determinants Theorem, part 1, shows how to determine when a matrix of the form
A — X is not invertible. The scalar equation det(A — AI) = 0 is called the characteristic equation of A.

Remark. A scalar A is an eigenvalue of an n X n matriz A if and only if X satisfies the characteristic
equation
det (A—XI)=0

If A is an n X n matrix, then det(A — AI) is a polynomial of degree n, called the characteristic polynomial
of A. The (algebraic) multiplicity of an eigenvalue X is its multiplicity as a root of the characteristic equation.

Definition. If A and B are n X n matrices, then A is similar to B if there is an invertible matriz P such
that P"YAP = B, or equivalently, A = PBP~'. Writing Q = P~', we have Q"'BQ = A. So B is also
similar to A, and we say simply that A and B are similar. Changing A into P~YAP is called a similarity
transformation.

Theorem 4. If n x n matrices A and B are similar, then they have the same characteristic polynomial and
hence the same eigenvalues (with the same multiplicities).

Proof. If B= P~1AP, then
B—-M=P 'AP - AP 'P=P Y AP - \P)=P *(A- AP
Using the multiplicative property (2) in Properties of Determinants Theorem, we compute
det(B — \I) = det[P~ (A — AA)P] = det(P~') - det(A — A1) - det(P) (2)

Sine det(P~1)-det(P) = det(P~'P) = det I = 1, we see from equation (2) that det(B—\I) = det(A—\I). O



Remark. 1. The matrices [(2) ; ] and {2

0 2 } are not similar, even though they have the same

ergenvalues.

2. Similarity is not the same as row equivalence. If A is row equivalent to B, then B = EA for some
invertible matrix E. Row operations on a matriz usually change its similarity.

Example 1. Find the characteristic polynomial and the eigenvalues of the matriz:

B

Example 2. Find the characteristic polynomial of the matriz. You may use a cofactor expansion.

5 =2 3
0 1 0
6 7T =2

Example 3. List the eigenvalues, repeated according to their multiplicities.

5 0 0 O
§ =4 0 0
0 7 1 0
1 -5 2 1

Often times, we may gain a better insight of linear algebra topics if we investigate them without resorting
to determinants.
Consider the operator T : R? — R? where

T(w,z) = (—z,w). (3)

This operator has a nice geometric interpretation: 7' is just a counterclockwise rotation by 90° about the
origin in R2. An operator has an eigenvalue if and only if there exists a nonzero vector in its domain that
gets sent by the operator to a scalar multiple of itself. The rotation of a nonzero vector in R? obviously never
equals a scalar multiple of itself. Conclusion: the operator T defined in (3) has no eigenvalues. However, if
T is defined on C? instead, then the story changes. To find eigenvalues of T', we must find the scalars A such
that

T(w,z) = AT (w, z)

has some solution other than w = z = 0. For T defined by (3), the equation above is equivalent to the
simultaneous equations

—z=Mw, w=A\z (4)
Substituting the value for w given by the second equation into the first equation gives
—z =Xz

Now a cannot equal 0 (otherwise (4) implies that w = 0; we are looking for solutions to (4) where (w, z) is
not the 0 vector), so the equation above leads to the equation

—1= )%

The solutions to this equation are A =i or A = —i. We may easily verify that ¢ and —i are eigenvalues of T’
Indeed, the eigenvectors corresponding to the eigenvalue i are the vectors of the form (w, —wi), with w € C,
and the eigenvectos corresponding to the eigenvalue —i are the vectors of the form (w,wi), with w € C.

Suppose T is an operator on V. The multiplicity of an eigenvalue A of T is defined to be the dimension
of the subspace of generalized eigenvectors corresponding to lam. In other words, the multiplicity of an
eigenvalue \ of T' equals dim Nul(A — AI)¥™ V' where A is the standard matrix of 7. If T has an upper-
triangular matrix with respect to some basis of V' (as always happens when the scalars are complex numbers),
then the multiplicity of A is simply the number of times A appears on the diagonal of this matrix.



Example 4. Suppose
T(Z17z27z3) = (0,21,52’3). (5)

We may verify that 0 is an eigenvalue of T with multiplicity 2, that 5 is an eigenvalue of T with multiplicity
1, and that T has no additional eigenvalues.

Example 5. Suppose T : R? = R3 is an operator whose matriz is

6 7 7
06 7. (6)
00 7

Then 6 is an eigenvalue of T with multiplicity 2 and 7 is an eitgenvalue of T with multiplicity 1.

In each of the examples above, the sum of the multiplicities of the eigenvalues of T" equals 3, which is the
dimension of the domain of 7.

5.2.1 The Characteristic Polynomial

Let’s begin with the trivial case of 1-by-1 matrices. Suppose V is a real vector space with dimension 1 and
T is an operator on V. If [A] equals the matrix of T' with respect to some basis of V, then the matrix of T
is AI. We define the characteristic polynomial of [A] to be z — A.

Now let’s look at 2-by-2 matrices. We define the characteristic polynomial of a 2-by-2 matrix [ Z ¢ ]

d
to be (z —a)(z — d) — be.
Suppose V is a complex vector space and T is an operator on V. Let Aqy,...,\,, denote the distinct
eigenvalues of T'. Let d; denoted the multiplicity of A\; as an eigenvalue of T'. The polynomial

(z=A)B (2= M)

is called the characteristic polynomial of T. Note that the degree of the characteristic polynomial of T" equals
dim V. Obviously the roots of the characteristic polynomial of T equal the eigenvalues of T

Example 6. The characteristic polynomial of the operator T defined by (5) equals z*(z — 5).

Example 7. If T is the operator whose matriz is given by (6), then the characteristic polynomial of T equals
(x —6)%(x—1).

Now suppose V is a real vector space and T is an operator on V. With respect to some basis of V., T
has a block upper-triangular matrix of the form

A1 *
. , (7)
0 Am

where each A; is a 1-byl matrix or a 2-by-2 matrix with no eigenvalues. We define the characteristic
polynomial of T to be the product of the characteristic polynomials of Ay, ..., A,,. Explicitly, for each j, we
define ¢; € P by

G = (@ —a)(e—d) - be ifAj[Z H ()
Then the characteristic polynomial of T is

q1(w) -+ g ().

Clearly the characterisic polynomial of 7" has degree dim V. Furthermore, the characteristic polynomial of
T depends only on 7" and not on the choice of a particular basis.



