
5 Eigenvalues and Eigenvectors

5.1 Eigenvectors and Eigenvalues

An operator is a linear map from a vector space to itself. The notion of a subspace that gets mapped into
itself is sufficiently important to deserve a name. Thus, for T an operator from V into V and U a subspace
of V , we say that U is invariant under T if u ∈ U implies Tu ∈ U . For example, if T is the operator of
differentiation on P7, then P4, which is a subspace of P7, is invariant under T because the derivative of any
polynomial of degree at most 4 is also a polynomial with degree at most 4.

How does an operator behave on an invariant subspace of dimension 1? Subspaces of V of dimension 1
are easy to describe. Take any nonzero vector u ∈ V and let U equal the set of all scalar multiples of u:

U = {au : a ∈ R}. (1)

Then U is a one-dimensional subspace of V , and every one-dimensional subspace of V is of this form. If
u ∈ V and the subspace U defined by (1) is invariant under T : V → V , then Tu must be in U , and hence
there must be a scalar λ ∈ R such that Tu = λu. Converseley, if u is a nonzero vector in V such that
Tu = λu for some λ ∈ R, then the subspace U defined by (1) is a one-dimensional subspace of V , invariant
under T .

The equation
Tu = λu (2)

which we have just seen is intimately connected with one-dimensional invariant subspaces, is important
enough that the vectors u and scalars λ satisfying it are given special names.

Definition. A scalar λ ∈ R is called an eigenvalue of operator T : V → V if there exists a nonzero vector
u ∈ V such that Tu = λu.

We must require u to be nonzero because with u = 0, every scalar λ ∈ R satisfies (2). The comments
above show that T has a one-dimensional invariant subspace if and only if T has an eigenvalue. If the
standard matrix for T is A, then we have Tx = Ax. The equation Ax = λx is equivalent to (A− λI)x = 0.
So λ is an eigenvalue of T if and only if A− λI is not invertible.

Definition. Suppose λ ∈ R is an eigenvalue of A. A vector x ∈ V is called an eigenvector of A (corre-
sponding to λ) if Ax = λx.

Because (2) is equivalent to (A− λI)x = 0, we see that the set of eigenvectors of A corresponding to λ
equals Nul(A− λI). In particular, the set of eigenvectors of A corresponding to A is a subspace of V .

Note that λ is an eigenvalue of an n× n matrix A if and only if the equation

(A− λI)x = 0 (3)

has a nontrivial solution. The set of all solutions of (3) is just the null space of matrix A − λI. So this set
is a subspace of Rn and is called the eigenspace of A corresponding to λ.

Theorem 1. Suppose T : V → V has an upper-triangular matrix with respect to some basis of V . The the
eigenvalues of T consist precisely of the entries on the diagonal of that upper-triangular matrix.

Proof. Suppose {v1, . . . ,vn} is a basis of V with respect to which T has an upper-triangular matrix

A =


λ1 ∗

λ2
. . .

0 λn

 .
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Let λ ∈ R. Then

A− λI =


λ1 − λ ∗

λ2 − λ
. . .

0 λn − λ

 .
Hence A − λI is not invertible if and only if λ equals one of the λj ’s. In other words, λ is an eigenvalue of
T if and only if λ equals one of the λj ’s, as desired.

Theorem 2. If v1, . . . ,vr are eigenvectors that correspond to distinct eigenvalues λ1, . . . , λr of an n × n
matrix A, then the set {v1, . . . ,vr} is linearly independent.

Proof. Suppose {v1, . . . ,vr} is linearly dependent. Let k be the smallest positive integer such that

vk ∈ Span{v1, . . . ,vk−1}. (4)

Thus there exist a1, . . . , ak−1 ∈ R such that

vk = a1v1 + · · ·+ ak−1vk−1. (5)

Apply A to both sides of this equation, getting

λkvk = a1λ1v1 + · · ·+ ak−1λk−1vk−1.

Multiply both sides of (5) by λk and then subtract the equation above, getting

0 = a1(λk − λ1)v1 + · · ·+ ak−1(λk − λk−1)vk−1.

Because we chose k to be the smallest positive integer satisfying (4), {v1, . . . ,vk−1} is linearly independent.
Thus the equation above implies that all a’s are 0 (recall that λk is not equal to any of λ1, . . . , λk−1). However,
this means that vk equals 0 (see (5)), contradicting our hypothesis that all v’s are nonzero. Therefore our
assumption that {v1, . . . ,vr} is linearly dependent must have been false.

Corollary. Each operator on V has at most dim V distinct eigenvalues.

Proof. Let T : V → V be an operator. Suppose λ1, . . . , λm are distinct eigenvalues of T . Let v1, . . . ,vm

be corresponding nonzero eigenvectors. The last theorem implies that {v1, . . . ,vm} is linearly independent.
Thus m ≤ dim V , as desired.

Example 1. Is λ = 3 an eigenvalue of

 1 2 2
3 −2 1
0 1 1

? If so, find one corresponding eigenvector.

Example 2. Find a basis for the eigenspace corresponding to each listed eigenvalue.

A =

[
7 4
−3 −1

]
, λ = 1, 5

Example 3. Find the eigenvalues of the following matrix.

A =

 4 0 0
0 0 0
1 0 −3


Example 4. Without calculation, find one eigenvalue and two linearly independent eigenvectors of A = 5 5 5

5 5 5
5 5 5

. Justify.
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Example 5. Suppose A is an n× n matrix. Mark each statement True or False. Justify.

1. If Ax = λx for some scalar λ, then x is an eigenvector of A.

2. If v1 and v2 are linearly independent eigenvectors, then they correspond to distinct eigenvalues.

3. The eigenvalues of a matrix are on its main diagonal.

4. An eigenspace of A is a null space of a certain matrix.

Example 6. Show that λ is an eigenvalue of A if and only if λ is an eigenvalue of AT . [Hint: Find out
how A− λI and AT − λI are related.]

Example 7. Consider an n× n matrix A with the property that the row sums all equal the same number s.
Show that s is an eigenvalue of A. [Hint: Find an eigenvector.]

Example 8. Consider an n×n matrix A with the property that the column sums all equal the same number
s. Show that s is an eigenvalue of A. [Hint: Use the previous two examples.]
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