
10.5 The Heat Equation

A mathematical model for source-less the heat flow in a uniform wire whose ends are kept at constant
temperature 0 is the following initial value problem, where u(x, t) is the temperature in the wire at location
x and time t:

∂u

∂t
= β

∂2u

∂x2
, 0 < x < L, t > 0, (1)

u(0, t) = u(L, t) = 0, t ≥ 0, (2)

u(x, 0) = f(x), 0 < x < L. (3)

Equation (2) specifies that the temperature at the ends of the wire is zero. Equation (3) specifies the initial
temperature distribution. Using the method of separation of parameters, we may find the solution

u(x, t) =

∞∑
n=1

cne
−β(nπ/L)2t sin

nπx

L
. (4)

where the cn’s are the coefficients in the Fourier sine series for f(x):

f(x) =

∞∑
n=1

cn sin
nπx

L
. (5)

In other words, solving (1)-(3) reduces to computing the Fourier sine series for the initial value function
f(x).

In this section, we discuss heat flow problems where the ends of the wire are kept at a constant temperature
other than zero, that is, nonhomogeneous boundary conditions. We will also discuss the problem in which a
heat source is adding heat to the wire, that is, a nonhomogeneous partial differential equation. The problem
of heat flow in a rectangular plate leads to the topic of double Fourier series.

Suppose the ends of the wire are insulated, that is, no heat flows in or out at the ends. It follows from
the principle of heat conduction that the temperature gradient must be zero at the endpoints, that is,

∂u

∂x
(0, t) =

∂u

∂x
(L, t) = 0, t > 0.

Example 1. Find a formal solution to the heat flow problem governed by the initial-boundary value problem

∂u

∂t
= β

∂2u

∂x2
, 0 < x < L, t > 0 (6)

∂u

∂x
(0, t) =

∂u

∂x
(L, t) = 0, t > 0 (7)

u(x, 0) = f(x), 0 < x < L. (8)

Solution. Using the method of separation of variables, we first assume that

u(x, t) = X(t)T (t).

Substituting into (6) and separating variables, we get two equations

X ′′(x) + λX(x) = 0 (9)

T ′(t) + βλT (t) = 0, (10)

where λ is some constant. The boundary conditions in (7) become

X ′(0)T (t) = 0 and X ′(L)T (t) = 0.
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For these equations to hold for all t0, either T (t) = 0, which implies that u(x, t) = 0, or

X ′(0) = X ′(L) = 0. (11)

Combining the boundary conditions in (11) with (9) gives the boundary value problem

X ′′(x) + λX(x) = 0, X ′(0) = X ′(L) = 0, (12)

where λ can be any constant.
To solve for the nontrivial solutions to (12), we try X(x) = erx and form the auxiliary equation r2+λ = 0.

When λ < 0, there are no trivial solutions to (12).
When λ = 0, the auxiliary equation has the repeated root 0 and a general solution to the differential

equation is
X(x) = A+Bx.

The boundary conditions in (12) reduce to B = 0 with A arbitrary. Thus, for λ = 0, the nontrivial solutions
to (12) are of the form

X(x) = c0,

where c0 = A is an arbitrary nonzero constant.
When λ > 0, the auxiliary equation has the roots r = ±i

√
λ. Thus, a general solution to the differential

equation in (12) is

X(x) = C1 cos
√
λx+ C2 sin

√
λx.

The boundary conditions in (12) lead to the system

√
λC2 = 0

−
√
λC1 sin

√
λL+

√
λC2 cos

√
λL = 0.

Hence, C2 = 0 and the system reduces to solving c1 sin
√
λL = 0. Since sin

√
λL = 0 only when

√
λL = nπ,

where n is an integer, we obtain a nontrivial solution only when
√
λ = nπ/L or λ = (nπ/L)2, n = 1, 2, 3, . . ..

Furthermore, the nontrivial solutions (eigenfunctions) Xn corresponding to the eigenvalue λ = (nπ/L)2 are
given by

Xn(x) = cn cos
nπx

L
, (13)

where the cn’s are arbitrary nonzero constants. In fact, formula (13) also holds for n = 0, since λ = 0 has
the eigenfunction X0(x) = c0.

Having determined that λ = (nπ/L)2, n = 0, 1, 2, . . ., let’s consider (10) for such λ:

T ′(t) + β(nπ/L)2T (t) = 0.

For n = 0, 1, 2, . . ., the general solution is

Tn(t) = bne
−β(nπ/L)2t,

where the bn’s are arbitrary constants. Combining this with equation (13), we obtain the functions

un(x, t) = Xn(x)Tn(t) =
[
cn cos

nπx

L

] [
bne
−β(nπ/L)2t

]
,

un(x, t) = ane
−β(nπ/L)2t cos

nπx

L
,

where an = bncn is, again, an arbitrary constant.
If we take an infinite series of these functions, we obtain

u(x, t) =
a0
2

+

∞∑
n=1

ane
−β(nπ/L)2t cos

nπx

L
, (14)
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which will be a solution to (6)-(7) provided the series has the proper convergence behavior. Notice that in
(14) we have altered the constant term and written it as a0/2, thus producing the standard form for cosine
expansions.

Assuming a solution to (6)-(7) is given by the series in (14) and substituting into the initial conditions
(8), we get

u(x, 0) =
a0
2

+

∞∑
n=1

an cos
nπx

L
= f(x), 0 < x < L. (15)

This means that if we choose the an’s as the coefficients in the Fourier cosine series for f ,

an =
2

L

∫ L

0

f(x) cos
nπx

L
dx, n = 0, 1, 2, . . . ,

then u(x, t) given in (14) will be a formal solution to the heat flow problem (6)-(8). Again, if this expansion
converges to a continuous function with continuous second partial derivatives, then the formal solution is an
actual solution.

Example 2. Find a formal solution to the following initial-boundary value problem:

∂u

∂t
= 2

∂2u

∂x2
, 0 < x < 1, t > 0

∂u

∂x
(0, t) =

∂u

∂x
(1, t) = 0, t > 0

u(x, 0) = x(1− x), 0 < x < 1.

When the ends of the wire are kept at 0◦C or when the ends are insulated, the boundary conditions are
said to be homogeneous. But when the ends of the wire are kept at constant temperatures different from
zero, that is,

u(0, t) = U1 and u(L, t) = U2, t > 0, (16)

then the boundary conditions are called nonhomogeneous.
We expect that the solution to the heat flow problem with nonhomogeneous boundary condition will

consist of a steady-state solution v(x) that satisfies the nonhomogeneous boundary conditions in (16) plus a
transient solution w(x, t). That is,

u(x, t) = v(x) + w(x, t), (17)

where w(x, t) and its partial derivatives tend to zero as t → ∞. The function w(x, t) will then satisfy the
homogeneous boundary conditions.

Example 3. Find a formal solution to the heat flow problem governed by the initial-boundary value problem

∂u

∂t
= β

∂2u

∂x2
, 0 < x < L, t > 0 (18)

u(0, t) = U1, u(L, t) = U2, t > 0 (19)

u(x, 0) = f(x), 0 < x < L. (20)

Solution. Suppose u(x, t) satisfies (17). Substituting in equations (18)-(20) leads to

∂u

∂t
=
∂w

∂t
= βv′′(x) + β

∂2w

∂x2
, 0 < x < L, t > 0 (21)

v(0) + w(0, t) = U1, v(L) + w(L, t) = U2, t > 0 (22)

v(x) + w(x, 0) = f(x), 0 < x < L. (23)
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If we allow t → ∞ in (21)-(22), assuming that w(x, t) is a transient solution, we obtain the steady-state
boundary value problem

v′′(x) = 0, 0 < x < L,

v(0) = U1, v(L) = U2.

Solving for v, we obtain v(x) = Ax+B, and choosing A and B so that the boundary conditions are satisfied,
yields

v(x) = U1 +
U2 − U1

L
x (24)

as the steady-state solution.
With this choice for v(x), the initial-boundary value problem (21)-(23) reduces to the following initial-

boundary value problem for w(x, t):

∂w

∂t
= β

∂2w

∂x2
, 0 < x < L, t0 (25)

w(0, t) = w(L, t) = 0, t > 0 (26)

w(x, 0) = f(x)− U1 −
U2 − U1

L
x, 0 < x < L. (27)

A formal solution to (25)-(27) is given by (4). Hence,

w(x, t) =

∞∑
n=1

cne
−β(nπ/L)2t sin

nπx

L
,

where the cn’s are the coefficients of the Fourier sine series expansion

f(x)− U1 −
U2 − U1

L
x =

∞∑
n=1

cn sin
nπx

L
.

Therefore, the formal solution to (18)-(20) is

u(x, t) = U1 +
U2 − U1

L
x+

∞∑
n=1

cne
−β(nπ/L)2t sin

nπx

L
, (28)

with

cn =
2

L

∫ L

0

(
f(x)− U1 −

U2 − U1

L
x

)
sin

nπx

L
dx.

The method of separation of variables is also applicable to problems in higher dimensions. For example,
consider the problem of heat flow in a rectangular plate with sides x = 0, x = L, y = 0, and y = W . If
the two sides y = 0, y = W are kept at a constant temperature of 0◦C and the two sides x = 0, x = L
are perfectly insulated, then heat flow is governed by the initial-boundary value problem in the following
example.

Example 4. Find a formal solution u(x, y, t) to the initial-boundary value problem

∂u

∂t
= β

{
∂2u

∂x2
+

∂u

∂y2

}
, 0 < x < L, 0 < y < W, t > 0 (29)

∂u

∂x
(0, y, t) =

∂u

∂x
(L, y, t) = 0, 0 < y < W, t > 0 (30)

u(x, 0, t) = u(x,W, t) = 0, 0 < x < L, t > 0 (31)

u(x, y, 0) = f(x, y), 0 < x < L, 0 < y < W. (32)
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Solution. If we assume a solution of the form u(x, y, t) = V (x, y)T (t), then equation (29) separates into the
two equations

T ′′(t) + βλT (t) = 0 (33)

∂2V

∂x2
(x, y) +

∂2V

∂y2
(x, y) + λV (x, y) = 0, (34)

where λ can be any constant. To solve equation (34), we again use separation of variables. Here we assume
V (x, y) = X(x)Y (y). This allows us to separate equation (34) into the two equations

X ′′(x) + µX(x) = 0 (35)

Y ′′(y) + (λ− µ)Y (y) = 0, (36)

where µ can be any constant. To solve for X(x), we observe that the boundary conditions in (30), in terms
of the separated variables, become

X ′(0)Y (y)T9t) = X ′(L)Y (y)T (t) = 0, 0 < y < W, t > 0.

Here, in order to get a nontrivial solution, we must have

X ′(0) = X ′(L) = 0. (37)

The boundary value problem for X given in (35) and (37) was solved in a previous example. Here µ =
(mπ/L)2,m = 0, 1, 2, . . . , and

Xm(x) = cm cos
mπx

L
,

where the cm’s are arbitrary.
To solve for Y (y), we first observe that the boundary conditions in (31) become

Y (0) = Y (W ) = 0. (38)

Next, substituting µ = (mπ/L)2 into (36) yields

Y ′′(y) + (λ− (mπ/L)2)Y (y) = 0,

which we can rewrite as
Y ′′(y) + EY (y) = 0, (39)

where E = λ− (mπ/L)2. It can be shown that E = (nπ/W )2, n = 1, 2, 3, . . . and the nontrivial solutions of
the boundary value problem for Y consisting of (38)-(39) are

Yn(y) = an sin
nπy

W
,

where the an’s are arbitrary.
Since λ = E + (mπ/L)2, we have

λ = (nπ/W )2 + (mπ/L)2, m = 0, 1, 2, . . . , n = 1, 2, 3, . . . .

Substituting λ into (33), we can solve for T (t) and obtain

Tmn(t) = bmne
−(m2/L2+n2/W 2)βπ2t.

Substituting in for Xm, Yn, and Tmn, we get

umn(x, y, t) =
(
cm cos

mπx

L

)(
an sin

nπy

W

)
(bmne

−(m2/L2+n2/W 2)βπ2t) (40)

umn(x, y, t) = amne
−(m2/L2+n2/W 2)βπ2t cos

mπx

L
sin

nπy

W
, (41)
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where amn = anbmncm (m = 0, 1, 2, . . . , n = 1, 2, 3, . . .) are arbitrary constants.
If we now take a doubly infinite series of such functions, then we obtain the formal series

u(x, y, t) =

∞∑
m=0

∞∑
n=1

amne
−(m2/L2+n2/W 2)βπ2t cos

mπx

L
sin

nπy

W
. (42)

We are now ready to apply the initial conditions (32). Setting t = 0, we obtain

u(x, y, 0) = f(x, y) =

∞∑
m=0

∞∑
n=1

amn cos
mπx

L
sin

nπy

W
. (43)

This is a double Fourier series. The formula for the coefficients amn are obtained by exploiting the orthog-
onality conditions twice. Presuming (43) is valid and permits term-by-term integration, we multiply each
side by cos(pπx/L) sin(qπy/W ) and integrate over x and y:∫ L

0

∫ W

0

f(x, y) cos
pπx

L
sin

qπy

W
dydx =

∞∑
m=0

∞∑
n=1

amn

∫ L

0

∫ W

0

cos
mπx

L
sin

nπy

W
cos

pπx

L
sin

qπy

W
dydx.

According to the orthogonality conditions, each integral on the right is zero, except when m = p and n = q.
Therefore, ∫ L

0

∫ W

0

f(x, y) cos
pπx

L
sin

qπy

W
dydx = apq

∫ L

0

cos2
pπx

L
dx

∫ W

0

sin2 qπy

W
dy

=

{
LW
4 apq, p 6= 0
LW
2 apq, p = 0.

Hence,

apq =
2

LW

∫ L

0

∫ W

0

f(x, y) sin
qπy

W
dydx, q = 1, 2, 3, . . . , (44)

and for p ≥ 1, q ≥ 1,

apq =
4

LW

∫ L

0

∫ W

0

f(x, y) cos
pπx

L
sin

qπy

W
dydx. (45)

Finally, the solution to the initial-boundary value problem (29)-(32) is given by (42), where the coefficients
are prescribed by (44) and (45).

Theorem 1. Let u(x, t) be a continuously differentiable function that satisfies the heat equation

∂u

∂t
= β

∂2u

∂x2
, 0 < x < L, t > 0, (46)

and the boundary conditions
u(0, t) = u(L, t) = 0, t ≥ 0. (47)

Then u(x, t) attains its maximum value at t = 0, for some x in [0, L], that is,

max
t≥0,0≤x≤L

u(x, t) = max
0≤x≤L

u(x, 0).

Theorem 2. The initial-boundary value problem

∂u

∂t
= β

∂2u

∂x2
, 0 < x < L, t > 0, (48)

u(0, t) = u(L, t) = 0, t ≥ 0, (49)

u(x, 0) = f(x), 0 < x < L, (50)

has at most one continuously differentiable solution.

6


