10.4 Fourier Cosine and Sine Series

To solve a partial differential equation, typically we represent a function by a trigonometric series consisting of only sine functions or only cosine functions.

Recall that the Fourier series for an odd function defined on $[-L, L]$ consists entirely of sine terms. Thus we might achieve

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} a_{n} \sin \frac{n \pi x}{L} \tag{1}
\end{equation*}
$$

by artificially extending the function $f(x), 0<x<L$ to the interval ($-L, L$) in such a way that the extended function is odd. That is,

$$
f_{o}(x)= \begin{cases}f(x), & 0<x<L, \\ -f(-x), & -L<x<0,\end{cases}
$$

and extending $f_{o}(x)$ to all x using $2 L$-periodicity. $f_{o}(x)$ is an extension of $f(x)$ because $f_{o}(x)=f(x)$ on $(0, L)$. This extension is called the odd $2 L$-periodic extension of $f(x)$. The resulting Fourier series expansion is called a half-range expansion for $f(x)$ because it represents the function $f(x)$ on $(0, L)$.

Similarly, the even $2 L$-periodic extension of $f(x)$ as the function

$$
f_{e}(x)= \begin{cases}f(x), & 0<x<L, \\ f(-x), & -L<x<0,\end{cases}
$$

with $f_{e}(x+2 L)=f_{e}(x)$.
To illustrate the various extensions, let's consider the function $f(x)=x, 0<x<\pi$. If we extend $f(x)$ to the interval ($-\pi, \pi$) using π-periodicity, then the extension f is given by

$$
\tilde{f}(x)= \begin{cases}x, & 0<x<\pi \\ x+\pi, & -\pi<x<0,\end{cases}
$$

with $\tilde{f}(x+2 \pi)=\widetilde{f}(x)$. In the previous quiz we saw that the Fourier series for $\widetilde{f}(x)$ is

$$
\widetilde{f}(x) \sim \frac{\pi}{2}-\sum_{k=1}^{\infty} \frac{1}{k} \sin 2 k x,
$$

which consists of both odd functions (the sine terms) and even functions (the constant term), because the π-periodic extension $\widetilde{f}(x)$ is neither an even nor an odd function. The odd 2π-periodic extension of $f(x)$ is just $f_{o}(x)=x,-\pi<x<\pi$, which has the Fourier series expansion

$$
\begin{equation*}
f_{o}(x) \sim 2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin n x . \tag{2}
\end{equation*}
$$

Because $f_{o}(x)=f(x)$ on the interval $(0, \pi)$, the expansion in (2) is a half-range expansion for $f(x)$. The even 2π-periodic extension of $f(x)$ is the function $f_{e}(x)=|x|,-\pi<x<\pi$, which has the Fourier series expansion

$$
\begin{equation*}
f_{e}(x)=\frac{\pi}{2}-\frac{4}{\pi} \sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{2}} \cos (2 k-1) x \tag{3}
\end{equation*}
$$

(see Example 2 in $\S 10.3$ lecture notes).
The preceding three extensions, the π-periodic function $\widetilde{f}(x)$, the odd 2π-periodic function $f_{o}(x)$, and the even 2π-periodic function $f_{e}(x)$, are natural extensions of $f(x)$. The Fourier series expansions for $f_{o}(x)$ and $f_{e}(x)$, given in (2) and (3) equal $f(x)$ on the interval $(0, \pi)$. This motivates the following definitions.

Definition. Let $f(x)$ be piecewise continuous on the interval $[0, L]$. The Fourier cosine series of $f(x)$ on $[0, L]$ is

$$
\begin{equation*}
\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x, \quad n=0,1, \ldots \tag{5}
\end{equation*}
$$

The Fourier sine series of $f(x)$ on $[0, L]$ is

$$
\begin{equation*}
\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x, \quad n=1,2, \ldots \tag{7}
\end{equation*}
$$

The trigonometric series in (4) is the Fourier series for $f_{e}(x)$, the even $2 L$-periodic extension of $f(x)$. The trigonometric series in (6) is the Fourier series for $f_{o}(x)$, the odd $2 L$-periodic extension of $f(x)$. These are called half-range expansions for $f(x)$.

Example 1. Determine (a) the π-periodic extension \widetilde{f}, (b) the odd 2π-periodic extension f_{o}, and (c) the even 2π-periodic extension f_{e}, for $f(x)=\pi-x, 0<x<\pi$.

Example 2. Compute the Fourier sine series for $f(x)=\pi-x, 0<x<\pi$.
Example 3. Compute the Fourier cosine series for $f(x)=e^{-x}, 0<x<1$.
A mathematical model for source-less the heat flow in a uniform wire whose ends are kept at constant temperature 0 is the following initial value problem, where $u(x, t)$ is the temperature in the wire at location x and time t :

$$
\begin{array}{rlr}
\frac{\partial u}{\partial t}(x, t)=\beta \frac{\partial^{2} u}{\partial x^{2}}(x, t), & 0<x<L, t>0 \\
u(0, t)=u(L, t)=0, & t>0 \\
u(x, 0)=f(x), & 0<x<L \tag{10}
\end{array}
$$

Using the method of separation of variables, we may derive the following solution:

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} c_{n} e^{-\beta(n \pi / L)^{2} t} \sin \frac{n \pi x}{L} \tag{11}
\end{equation*}
$$

Example 4. Find the solution to the heat problem

$$
\begin{array}{lr}
\frac{\partial u}{\partial t}=5 \frac{\partial^{2} u}{\partial x^{2}}, & 0<x<\pi, t>0 \\
u(0, t)=u(\pi, t)=0, & t>0 \\
u(x, 0)=x(\pi-x), & 0<x<\pi
\end{array}
$$

