4.7 Change of Basis

Theorem 15. Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ and $\mathcal{C} = \{\mathbf{c}_1, \dots, \mathbf{c}_n\}$ be bases of a vector space V. Then there is a unique $n \times n$ matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{\overset{P}{\leftarrow}}$ such that

$$\mathbf{x}]_{\mathcal{C}} = \stackrel{P}{\underset{\mathcal{C} \leftarrow \mathcal{B}}{\to}} [\mathbf{x}]_{\mathcal{B}}$$
(1)

The columns of ${P \atop \mathcal{C} \leftarrow \mathcal{B}}$ are the \mathcal{C} -coordinate vectors of the vectors in the basis \mathcal{B} . That is,

$${}_{\mathcal{C}\leftarrow\mathcal{B}}^{P} = \begin{bmatrix} [\mathbf{b}_{1}]_{\mathcal{C}} & [\mathbf{b}_{2}]_{\mathcal{C}} & \cdots & [\mathbf{b}_{n}]_{\mathcal{C}} \end{bmatrix}$$
(2)

The matrix $\stackrel{P}{_{\mathcal{C}\leftarrow\mathcal{B}}}$ in Theorem 15 is called the *change-of-coordinates matrix from* \mathcal{B} to \mathcal{C} . Multiplication by $\stackrel{P}{_{\mathcal{C}\leftarrow\mathcal{B}}}$ converts \mathcal{B} -coordinates into \mathcal{C} -coordinates.

The columns of $\stackrel{P}{\underset{C \leftarrow B}{C \leftarrow B}}$ are linearly independent because they are the coordinate vectors of the linearly independent set \mathcal{B} . Since $\stackrel{P}{\underset{C \leftarrow B}{C \leftarrow B}}$ is square, it must be invertible, by the IMT. Left-multiplying both sides of equation (1) by $\binom{P}{\underset{C \leftarrow B}{C \leftarrow B}}^{-1}$ yields

$$\begin{pmatrix} P \\ \mathcal{C} \leftarrow \mathcal{B} \end{pmatrix}^{-1} [\mathbf{x}]_{\mathcal{C}} = [\mathbf{x}]_{\mathcal{B}}$$

Thus $\binom{P}{\mathcal{C}\leftarrow\mathcal{B}}^{-1}$ is the matrix that converts \mathcal{C} -coordinates into \mathcal{B} -coordinates. That is,

$$\binom{P}{\mathcal{C}\leftarrow\mathcal{B}}^{-1} = \overset{P}{\underset{\mathcal{B}\leftarrow\mathcal{C}}{\overset{P}{\leftarrow}}}$$
(3)

If $\mathcal{B} = {\mathbf{b}_1, \ldots, \mathbf{b}_n}$ and \mathcal{E} is the standard basis ${\mathbf{e}_1, \ldots, \mathbf{e}_n}$ in \mathbb{R}^n , then $[\mathbf{b}_1]_{\mathcal{E}} = \mathbf{b}_1$, and likewise for the other vectors in \mathcal{B} . In this case, $\overset{P}{\mathcal{C} \leftarrow \mathcal{B}}$ is the same as the change-of-coordinates matrix $P_{\mathcal{B}}$ introduced in §4.4, namely,

$$P_{\mathcal{B}} = \begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_n \end{bmatrix}$$

To change coordinates between two nonstandard bases in \mathbb{R}^n , we need Theorem 15. The theorem shows that to solve the change-of-basis problem, we need the coordinate vectors of the old basis relative to the new basis.

Example 1. Let $\mathcal{A} = \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$ and $\mathcal{D} = \{\mathbf{d}_1, \mathbf{d}_2, \mathbf{d}_3\}$ be bases for V, and let $P = [[\mathbf{d}_1]_{\mathcal{A}} \quad [\mathbf{d}_2]_{\mathcal{A}} \quad [\mathbf{d}_3]_{\mathcal{A}}]$. Which of the followind equations is satisfied by P for all \mathbf{x} in V? (i) $[\mathbf{x}]_{\mathcal{A}} = P[\mathbf{x}]_{\mathcal{D}}$ (ii) $[\mathbf{x}]_{\mathcal{D}} = P[\mathbf{x}]_{\mathcal{A}}$.

Example 2. Let $\mathcal{B} = {\mathbf{b}_1, \mathbf{b}_2}$ and $\mathcal{C} = {\mathbf{c}_1, \mathbf{c}_2}$ be bases for \mathbb{R}^2 . Find the change-of -coordinates matrix from \mathcal{B} to \mathcal{C} and the change-of-coordinates matrix from \mathcal{C} to \mathcal{B} .

$$\mathbf{b}_1 = \begin{bmatrix} -1 \\ 8 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} 1 \\ -5 \end{bmatrix}, \mathbf{c}_1 = \begin{bmatrix} 1 \\ 4 \end{bmatrix}, \mathbf{c}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$