4.6 Rank

If A is an $m \times n$ matrix, each row of A has n entries and thus can be identified with a vector in \mathbb{R}^n . The set of all linear combinations of the row vectors is called the row space of A and is denoted by RowA. Since the rows of A are identified with the columns of A^T , we could also write $\operatorname{Col} A^T$ in place or RowA.

Theorem 13. If two matrices A and B are row equivalent, then their row spaces are the same. If B is in echelon form, the nonzero rows of B form a basis for the row space of A as well as for that of B.

Definition. The rank of A is the dimension of the column space of A.

Theorem 14 (The Rank Theorem). The dimensions of the column space and the row space of an $m \times n$ matrix A are equal. This common dimension, the rank of A, also equals the number of pivot positions in A and satisfies the equation

rank $A + \dim$ Nul A = n

Theorem (IMT (continued)). Let A be an $n \times n$ matrix. Then each of the following is equivalent to the statement that A is an invertible matrix.

- 13. The columns of A form a basis of \mathbb{R}^n .
- 14. Col $A = \mathbb{R}^n$
- 15. dim Col A = n
- 16. rank A = n
- 17. Nul $A = \{0\}$
- 18. dim Nul A = 0

Example 1. Assume that $A \sim B$, where

	1	1	-3	7	9	-9]		1	1	-3	7	9	-9
	1	2	-4	10	13	-12			0	1	-1	3	4	-3
A =	1	-1	-1	1	1	-3	,	B =	0	0	0	1	-1	-2
	1	-3	1	-5	-7	3			0	0	0	0	0	0
	1	-2	0	0	-5	-4			0	0	0	0	0	0

Without calculations, list rank A and dim Nul A. Then find bases for Col A, Row A, and Nul A. **Example 2.** If a 6×3 matrix A has rank 3, find dim Nul A, dim Row A, and rank A^T . **Example 3.** If the null space of a 7×6 matrix A is 5-dimensional, what is dim Col A? **Example 4.** If A is a 6×4 matrix, what is the smallest possible dimension of Nul A?