4.5 The Dimension of a Vector Space

Theorem 9. If a vector space V has a basis $\mathcal{B} = {\mathbf{b}_1, \ldots, \mathbf{b}_n}$, then any set in V containing more than n vectors must be linearly dependent.

Theorem 10. If a vector space V has a basis of n vectors, then every basis of V must consist of exactly n vectors.

Definition. If V is spanned by a finite set, then V is said to be finite-dimensional, and the dimension of V, written as dimV, is the number of vectors in a basis for V. The dimension of the zero vector space $\{0\}$ is defined to be zero If V is not spanned by a finite set, then V is said to be infinite-dimensional.

Theorem 11. Let H be a subspace of a finite-dimensional vector space V. Any linearly independent set in H can be expanded, if necessary, to a basis for H. Also, H is finite-dimensional and

 $\dim H \le \dim V$

Theorem 12 (The Basis Theorem). Let V be a p-dimensional vector space, $p \ge 1$. Any linearly independent set of exactly p elements in V is automatically a basis for V. Any set of exactly p elements that spans V is automatically a basis for V.

The dimension of NulA is the number of free variables in the equation $A\mathbf{x} = \mathbf{0}$, and the dimension of ColA is the number of pivot columns in A.

Example 1. For the following set, (a) find a basis, and (b) state the dimension.

$$\left\{ \begin{bmatrix} a+b\\2a\\3a-b\\-b \end{bmatrix} : a,b \in \mathbb{R} \right\}$$

Example 2. Determine the dimensions of NulA and ColA for

$$A = \left[\begin{array}{rrr} 1 & 4 & -1 \\ 0 & 7 & 0 \\ 0 & 0 & 0 \end{array} \right]$$