4.4 Coordinate Systems

Theorem 7 (The Unique Representation Theorem). Let $\mathcal{B} = {\mathbf{b}_1, \ldots, \mathbf{b}_n}$ be a basis for a vector space V. Then for each $\mathbf{x} \in V$, there exists a unique set of scalars c_1, \ldots, c_n such that

$$\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n \tag{1}$$

Proof. Since \mathcal{B} spans V, there exists sclars such that (1) holds. Suppose x also has the representation

$$\mathbf{x} = d_1 \mathbf{b}_1 + \dots + d_n \mathbf{b}_n$$

for scalars d_1, \ldots, d_n . Then, subtracting, we have

$$\mathbf{0} = \mathbf{x} - \mathbf{x} = (c_1 - d_1)\mathbf{b}_1 + \dots + (c_n - d_n)\mathbf{b}_n$$
(2)

Since \mathcal{B} is linearly independent, the weights in (2) must all be zero. That is, $c_j = d_j$ for all $1 \le j \le n$. \Box

Definition. Suppose $\mathcal{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n}$ is a basis for V and **x** is in V. The coordinates of **x** relative to the basis \mathcal{B} (or the \mathcal{B} -coordinates of **x**) are the weights c_1, \dots, c_n such that $\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n$.

If c_1, \ldots, c_n are the \mathcal{B} -coordinates of \mathbf{x} , then the vector in \mathbb{R}^n

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$

is the corrdinate vector of \mathbf{x} relative to \mathcal{B} , or the \mathcal{B} -coordinate vector of \mathcal{A} . The mapping $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ is the coordinate mapping determined by \mathcal{B} .

Example 1. Find the vector \mathbf{x} determined by coordinate vector $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} -4 \\ 8 \\ -7 \end{bmatrix}$ and the basis

$$\mathcal{B} = \left\{ \begin{bmatrix} -1\\ 2\\ 0 \end{bmatrix}, \begin{bmatrix} 3\\ -5\\ 2 \end{bmatrix}, \begin{bmatrix} 4\\ -7\\ 3 \end{bmatrix} \right\}$$

The standard basis for \mathbb{R}^n is formed by the columns of I_n : $\mathcal{E} = \{\mathbf{e}_1, \dots, \mathbf{e}_n\}$. Thus $[\mathbf{x}]_{\mathcal{E}} = \mathbf{x}$. When a basis \mathcal{B} for \mathbb{R}^n is fixed, the \mathcal{B} -coordinate vector of a specified \mathbf{x} is easily found.

Example 2. Find the coordinate vector $[\mathbf{x}]_{\mathcal{B}}$ of $\mathbf{x} = \begin{bmatrix} 3 \\ -5 \\ 4 \end{bmatrix}$ relative to the basis $\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 8 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} \right\}.$

Solution. The \mathcal{B} -coordinates c_1, c_2, c_3 of \mathbf{x} satisfy

$$c_{1} \begin{bmatrix} 1\\0\\3 \end{bmatrix} + c_{2} \begin{bmatrix} 2\\1\\8 \end{bmatrix} + c_{3} \begin{bmatrix} 1\\-1\\2 \end{bmatrix} = \begin{bmatrix} 3\\-5\\4 \end{bmatrix}$$
$$\begin{bmatrix} 1&2&1\\0&1&-1\\3&8&2 \end{bmatrix} \begin{bmatrix} c_{1}\\c_{2}\\c_{3} \end{bmatrix} = \begin{bmatrix} 3\\-5\\4 \end{bmatrix}$$
(3)

or

The augmented matrix from Equation
$$(3)$$
 row reduces to

$$\begin{bmatrix} 1 & 2 & 1 & 3 \\ 0 & 1 & -1 & -5 \\ 3 & 8 & 2 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 5 \end{bmatrix}$$

So
$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \\ 5 \end{bmatrix}$$
 and $\mathbf{x} = -2\begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} + 0\begin{bmatrix} 2 \\ 1 \\ 8 \end{bmatrix} + 5\begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}.$

The matrix in (3) changes the \mathcal{B} -coordinates of a vector \mathbf{x} into the standard coordinates for \mathbf{x} . An analogous change of coordinates can be carried out in \mathbb{R}^n for a basis $\mathcal{B} = {\mathbf{b}_1, \ldots, \mathbf{b}_n}$. Let

$$P_{\mathcal{B}} = [\mathbf{b}_1 \quad \cdots \quad \mathbf{b}_n]$$

Then the vector equation

$$\mathbf{x} = c_1 \mathbf{b}_1 + c_2 \mathbf{b}_2 + \dots + c_n \mathbf{b}_n$$

is equivalent to

$$\mathbf{x} = P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}} \tag{4}$$

We call $P_{\mathcal{B}}$ the change of coordinates matrix from \mathcal{B} to the standard basis in \mathbb{R}^n . Left multiplication by $P_{\mathcal{B}}$ transforms the coordinate vector $[\mathbf{x}]_{\mathcal{B}}$ into \mathbf{x} .

Since the columns of $P_{\mathcal{B}}$ form a basis for \mathbb{R}^n , $P_{\mathcal{B}}$ is invertible (by IMT). Left-multiplication by $P_{\mathcal{B}}^{-1}$ converts **x** into its \mathcal{B} -coordinate vector:

$$P_{\mathcal{B}}^{-1}\mathbf{x} = [\mathbf{x}]_{\mathcal{B}}$$

The correspondence $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$, produced here by $P_{\mathcal{B}}^{-1}$, is the coordinate mapping mentioned earlier. Since $P_{\mathcal{B}}^{-1}$ is an invertible matrix, the coordinate mapping is a 1-1 linear transformation from \mathbb{R}^n onto \mathbb{R}^n , by IMT.

Theorem 8. Let $\mathcal{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n}$ be a basis for a vector space V. Then the coordinate mapping $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ is a 1-1 linear transformation from V onto \mathbb{R}^n .

The linearity of the coordinate mapping extends to linear combinations. If $\mathbf{u}_1, \ldots, \mathbf{u}_p$ are in V and if c_1, \ldots, c_p are scalars, then

 $[c_1\mathbf{u}_1 + \dots + c_p\mathbf{u}_p]_{\mathcal{B}} = c_1[\mathbf{u}_1]_{\mathcal{B}} + \dots + c_p[\mathbf{u}_p]_{\mathcal{B}}$ (5)

In words, (5) says that the \mathcal{B} -coordinate vector of a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_p$ is the *same* linear combination of their coordinate vectors.

The coordinate mapping in Theorem 8 is an important example of an *isomorphism* from V onto \mathbb{R}^n . In general, a 1-1 linear transformation from a vector space V onto a vector space W is called an *isomorphism* from V onto W. The notation and terminology for V and W may differ, but the two spaces are indistinguishable as vector spaces. Every vector space calculation in V is accurately reproduced in W, and vice versa. In particular, any real vector space with a basis of n vectors is indistinguishable from \mathbb{R}^n .

Example 3. Let $\mathcal{B} = \{1, t, t^2, t^3\}$ be the standard basis of the space \mathbb{P}_3 of polynomials. A typical element $\mathbf{p} \in \mathbb{P}_3$ has the form

$$\mathbf{p}(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$$

Since \mathbf{p} is already displayed as a linear combination of the standard basis vectors, we conclude that

$$[\mathbf{p}]_{\mathcal{B}} = \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix}$$

Thus the coordinate mapping $\mathbf{p} \mapsto [\mathbf{p}]_{\mathcal{B}}$ is an isomorphism from \mathbb{P}_3 onto \mathbb{R}^4 . All vector space operations in \mathbb{P}_3 correspond to operations in \mathbb{R}^4 .