4.4 Coordinate Systems

Theorem 7 (The Unique Representation Theorem). Let $\mathcal{B} = {\bf{b_1}, \ldots, \bf{b_n}}$ be a basis for a vector space V. Then for each $\mathbf{x} \in V$, there exists a unique set of scalars c_1, \ldots, c_n such that

$$
\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n \tag{1}
$$

Proof. Since β spans V, there exists sclars such that (1) holds. Suppose x also has the representation

$$
\mathbf{x} = d_1 \mathbf{b}_1 + \dots + d_n \mathbf{b}_n
$$

for scalars d_1, \ldots, d_n . Then, subtracting, we have

$$
\mathbf{0} = \mathbf{x} - \mathbf{x} = (c_1 - d_1)\mathbf{b}_1 + \dots + (c_n - d_n)\mathbf{b}_n
$$
\n⁽²⁾

Since B is linearly independent, the weights in (2) must all be zero. That is, $c_j = d_j$ for all $1 \leq j \leq n$. \Box

Definition. Suppose $\mathcal{B} = \{b_1, \ldots, b_n\}$ is a basis for V and **x** is in V. The coordinates of **x** relative to the basis B (or the B-coordinates of \mathbf{x}) are the weights c_1, \ldots, c_n such that $\mathbf{x} = c_1 \mathbf{b}_1 + \cdots + c_n \mathbf{b}_n$.

If c_1, \ldots, c_n are the B-coordinates of **x**, then the vector in \mathbb{R}^n

$$
[\mathbf{x}]_{\mathcal{B}} = \left[\begin{array}{c} c_1 \\ \vdots \\ c_n \end{array} \right]
$$

is the corrdinate vector of x relative to B, or the B-coordinate vector of \curvearrowleft . The mapping $\mathbf{x} \mapsto [\mathbf{x}]_B$ is the coordinate mapping determined by B.

Example 1. Find the vector **x** determined by coordinate vector $[\mathbf{x}]_B =$ $\sqrt{ }$ $\overline{}$ −4 8 −7 1 and the basis

$$
\mathcal{B} = \left\{ \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ -5 \\ 2 \end{bmatrix}, \begin{bmatrix} 4 \\ -7 \\ 3 \end{bmatrix} \right\}
$$

The standard basis for \mathbb{R}^n is formed by the columns of $I_n: \mathcal{E} = {\bf{e}_1, \ldots, \bf{e}_n}$. Thus $[\mathbf{x}]_\mathcal{E} = \mathbf{x}$. When a basis \mathcal{B} for \mathbb{R}^n is fixed, the \mathcal{B} -coordinate vector of a specified **x** is easily found.

Example 2. Find the coordinate vector $[\mathbf{x}]_B$ of $\mathbf{x} =$ \lceil $\overline{}$ 3 −5 4 1 $relative to the basis B =$ $\sqrt{ }$ $\frac{1}{2}$ \mathcal{L} $\sqrt{ }$ $\overline{}$ 1 θ 3 1 \vert , $\sqrt{ }$ $\overline{}$ 2 1 8 1 \vert , $\sqrt{ }$ $\overline{}$ 1 −1 2 1 $\overline{1}$ λ \mathcal{L} $\left| \right|$.

Solution. The B-coordinates c_1, c_2, c_3 of **x** satisfy

$$
c_{1}\begin{bmatrix}1\\0\\3\end{bmatrix}+c_{2}\begin{bmatrix}2\\1\\8\end{bmatrix}+c_{3}\begin{bmatrix}1\\-1\\2\end{bmatrix}=\begin{bmatrix}3\\-5\\4\end{bmatrix}
$$

$$
\begin{bmatrix}1&2&1\\0&1&-1\\3&8&2\end{bmatrix}\begin{bmatrix}c_{1}\\c_{2}\\c_{3}\end{bmatrix}=\begin{bmatrix}3\\-5\\4\end{bmatrix}
$$
(3)

or

The augmented matrix from Equation (3) row reduces to

$$
\left[\begin{array}{rrr} 1 & 2 & 1 & 3 \\ 0 & 1 & -1 & -5 \\ 3 & 8 & 2 & 4 \end{array}\right] \sim \left[\begin{array}{rrr} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 5 \end{array}\right]
$$

So
$$
[\mathbf{x}]_B = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \\ 5 \end{bmatrix}
$$
 and $\mathbf{x} = -2 \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} + 0 \begin{bmatrix} 2 \\ 1 \\ 8 \end{bmatrix} + 5 \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$.

The matrix in (3) changes the B-coordinates of a vector x into the standard coordinates for x. An analogous change of coordinates can be carried out in \mathbb{R}^n for a basis $\mathcal{B} = {\bf{b}_1, ..., b_n}$. Let

$$
P_{\mathcal{B}} = [\mathbf{b}_1 \quad \cdots \quad \mathbf{b}_n]
$$

Then the vector equation

$$
\mathbf{x} = c_1 \mathbf{b}_1 + c_2 \mathbf{b}_2 + \dots + c_n \mathbf{b}_n
$$

is equivalent to

$$
\mathbf{x} = P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}} \tag{4}
$$

We call P_B the change of coordinates matrix from β to the standard basis in \mathbb{R}^n . Left multiplication by P_B transforms the coordinate vector $[\mathbf{x}]_B$ into **x**.

Since the columns of P_B form a basis for \mathbb{R}^n , P_B is invertible (by IMT). Left-multiplication by P_B^{-1} converts x into its β -coordinate vector:

$$
P_{\mathcal{B}}^{-1}\mathbf{x} = [\mathbf{x}]_{\mathcal{B}}
$$

The correspondence $\mathbf{x} \mapsto [\mathbf{x}]_B$, produced here by P_B^{-1} , is the coordinate mapping mentioned earlier. Since $P^{-1}_{\mathcal{B}}$ is an invertible matrix, the coordinate mapping is a 1-1 linear transformation from \mathbb{R}^n onto \mathbb{R}^n , by IMT.

Theorem 8. Let $\mathcal{B} = {\mathbf{b}_1, \ldots, \mathbf{b}_n}$ be a basis for a vector space V. Then the coordinate mapping $\mathbf{x} \mapsto [\mathbf{x}]_B$ is a 1-1 linear transformation from V onto \mathbb{R}^n .

The linearity of the coordinate mapping extends to linear combinations. If $\mathbf{u}_1, \ldots, \mathbf{u}_p$ are in V and if c_1, \ldots, c_p are scalars, then

 $[c_1\mathbf{u}_1 + \cdots + c_p\mathbf{u}_p]_B = c_1[\mathbf{u}_1]_B + \cdots + c_p[\mathbf{u}_p]_B$ (5)

In words, (5) says that the B-coordinate vector of a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_p$ is the same linear combination of their coordinate vectors.

The coordinate mapping in Theorem 8 is an important example of an *isomorphism* from V onto \mathbb{R}^n . In general, a 1-1 linear transformation from a vector space V onto a vector space W is called an *isomorphism* from V onto W. The notation and terminology for V and W may differ, but the two spaces are indistinguishable as vector spaces. Every vector space calculation in V is accurately reproduced in W , and vice versa. In particular, any real vector space with a basis of n vectors is indistinguishable from \mathbb{R}^n .

Example 3. Let $\mathcal{B} = \{1, t, t^2, t^3\}$ be the standard basis of the space \mathbb{P}_3 of polynomials. A typical element $\mathbf{p} \in \mathbb{P}_3$ has the form

$$
\mathbf{p}(t) = a_0 + a_1t + a_2t^2 + a_3t^3
$$

Since \bf{p} is already displayed as a linear combination of the standard basis vectors, we conclude that

$$
[\mathbf{p}]_{\mathcal{B}} = \left[\begin{array}{c} a_0 \\ a_1 \\ a_2 \\ a_3 \end{array}\right]
$$

Thus the coordinate mapping $\mathbf{p} \mapsto [\mathbf{p}]_B$ is an isomorphism from \mathbb{P}_3 onto \mathbb{R}^4 . All vector space operations in \mathbb{P}_3 correspond to operations in \mathbb{R}^4 .