4.2Null Spaces, Column Spaces, and Linear Transformations

Definition. The null space of an $m \times n$ matrix A, written as NulA, is the set of all solutions of the homogeneous equation $A\mathbf{x} = \mathbf{0}$. In set notation,

$$\operatorname{Nul} A = \{ \mathbf{x} : \mathbf{x} \in \mathbb{R}^n \text{ and } A\mathbf{x} = \mathbf{0} \}$$

Example 1. Determine if $\mathbf{w} = (1, -1, 1)$ in in NulA, where $A = \begin{bmatrix} 2 & 6 & 4 \\ -3 & 2 & 5 \\ -5 & -4 & 1 \end{bmatrix}$

Theorem 2. The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^n . Equivalently, the set of all solutions to a system $A\mathbf{x} = \mathbf{0}$ of m homogeneous linear equations in n unknowns is a subspace of \mathbb{R}^n .

Example 2. Find an explicit description of NulA, by listing vectors that span the null space, for A = $\begin{bmatrix} 1 & -3 & 2 & 0 \\ 0 & 0 & 3 & 0 \end{bmatrix}$

Definition. The column space of an $m \times n$ matrix A, written as ColA, is the set of all linear combinations of the columns of A. If $A = [\mathbf{a}_1 \quad \cdots \quad \mathbf{a}_n]$, then

$$\operatorname{Col} A = \operatorname{Span} \{ \mathbf{a}_1, \dots, \mathbf{a}_n \}$$

Theorem 3. The column space of an $m \times n$ matrix A is a subspace of \mathbb{R}^m .

Note that

$$\operatorname{Col} A = \{ \mathbf{b} : \mathbf{b} = A\mathbf{x} \text{ for some } \mathbf{x} \in \mathbb{R}^n \}$$

Example 3. For $A = \begin{bmatrix} 5 & -2 & 3 \\ -1 & 0 & -1 \\ 0 & -2 & -2 \\ -5 & 7 & 2 \end{bmatrix}$, (a) find k such that NulA is a subspace of \mathbb{R}^k , and (b) find k

such that ColA. is a subspace of \mathbb{R}

Recall:

Definition. A linear transformation $T: V \to W$ is a rule that assigns to each vector $\mathbf{x} \in V$ a unique vector $T(\mathbf{x}) \in W$, such that

- 1. $T(\mathbf{v} + \mathbf{w}) = T(\mathbf{v}) + T(\mathbf{w})$ for all $\mathbf{v}, \mathbf{w} \in V$, and
- 2. $T(c\mathbf{v}) = cT(\mathbf{v})$ for all $\mathbf{v} \in V$ and all scalars c.

The kernel, or null space of such a T is the set of all $\mathbf{u} \in V$ such that $T(\mathbf{u}) = \mathbf{0}$, the zero vector in W. The range of T is the set of all vectors in W of the form $T(\mathbf{x})$ for some $\mathbf{x} \in V$. If $T\mathbf{x} = A\mathbf{x}$ for the standard matrix A, then the kernel is the null space of A and the range of T is the column space of A. The kernel of T is a subspace of V. Also, the range of T is a subspace of W.

Example 4. Let $T: V \to W$ be a linear transformation from a vector space V into a vector space W. Prove that the range of T is a subspace of W. [Hint: Typical elements of the range have the form $T(\mathbf{x})$ and $T(\mathbf{w})$ for some $\mathbf{x}, \mathbf{w} \in V.$

Comparison between NulA and ColA for an $m \times n$ matrix A: NulA:

- 1. NulA is a subspace of \mathbb{R}^n .
- 2. NulA is implicitly defined; that is, you are given only a condition $(A\mathbf{x} = \mathbf{0})$ that vectors in NulA must satisfy.
- 3. It takes time to find vectors in NulA. Row operations on $\begin{bmatrix} A & \mathbf{0} \end{bmatrix}$ are required.
- 4. There is no obvious relation between NulA and the entries in A.
- 5. A typical vector $\mathbf{v} \in \text{Nul}A$ has the property that $A\mathbf{v} = \mathbf{0}$.
- 6. Given a specific vector \mathbf{v} , it is easy to tell if \mathbf{v} is in NulA. Just compute $A\mathbf{v}$.
- 7. Nul $A = \{ \not\models \}$ if and only if the equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- 8. Nul $A = \{0\}$ if and only if the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one.

ColA:

- 1. ColA is a subspace of \mathbb{R}^m .
- 2. ColA is explicitly defined; that is, you are told how to build vectors in ColA.
- 3. It is easy to find vectors in ColA. The columns of A are displayed; others are formed from them.
- 4. There an obvious relation between ColA and the entries in A, since each column of A is in ColA.
- 5. A typical vector $\mathbf{v} \in \text{Col}A$ has the property that the equation $A\mathbf{v} = \mathbf{v}$ is consistent.
- 6. Given a specific vector \mathbf{v} , it may take time to tell if \mathbf{v} is in ColA. Row operations on $\begin{bmatrix} A & \mathbf{v} \end{bmatrix}$ are required.
- 7. $\operatorname{Col} A = \mathbb{R}^m$ if and only if the equation $A\mathbf{x} = \mathbf{b}$ has a solution for every $\mathbf{b} \in \mathbb{R}^m$.
- 8. $\operatorname{Col} A = \mathbb{R}^m$ if and only if the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^n onto \mathbb{R}^m .