4 Vector Spaces

4.1 Vector Spaces and Subspaces

Definition. A vector space is a nonempty set V of objects, called vectors, on which are defined two operations, called addition and multiplication by scalars (real numbers), subject to ten axioms listed below. The axioms must hold for all vectors $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and for all scalars c, d.

- 1. The sum of \mathbf{u} and \mathbf{v} , denoted by $\mathbf{u} + \mathbf{v}$, is in V. This statement means V is closed under vector addition.
- 2. $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$.
- 3. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$.
- 4. There is a zero vetor $\mathbf{0} \in V$ such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$.
- 5. For each $\mathbf{u} \in V$, there is a vector $-\mathbf{u} \in V$ such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{u}$.
- 6. The scalar multiple of **u** by c, denoted by c**u**, is in V. This statment means V is closed under scalar multiplication.
- 7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$.
- 8. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$.
- 9. $c(d\mathbf{u}) = (cd)\mathbf{u}$.
- 10. $1\mathbf{u} = \mathbf{u}$.

Example 1. The spaces \mathbb{R}^n , where $n \geq 1$ is an integer, are premier examples of vector spaces.

Definition. A subspace of a vector space V is a subset H of V that has three properties:

- 1. The zero vector of V is in H.
- 2. H is closed under vector addition.
- 3. H is closed under scalar multiplication.

Example 2. The set consisting of only the zero vector in a vector space V is a subspace of V, called the zero subspace and written as $\{0\}$.

Theorem 1. If $\mathbf{v}_1, \dots, \mathbf{v}_p$ are in a vector space V, then $\mathrm{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is a subspace of V.

We call $\operatorname{Span}\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}$ the subspace spanned, or generated, by $\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}$. Given any subspace H of V, a spanning, or generating, set for H is a set $\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}$ in H such that $H = \operatorname{Span}\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}$.

Example 3. Let W be the set of all vectors of the forms shown, where a, b, c represent arbitrary real numbers. In each case, either find a set S of vectors that span W or give an example to show that W is not a vector space.

$$1. \begin{bmatrix} 1\\ 3a - 5b\\ 3b + 2a \end{bmatrix}$$

$$2. \begin{bmatrix} 4a+3b \\ 0 \\ a+3b+c \\ 3b-2c \end{bmatrix}$$