3.2 **Properties of Determinants**

Theorem 3. Let A be a square matrix.

- 1. If a multiple of one row of A is added to another row to produce a matrix B, then det B = det A.
- 2. If two rows of A are interchanged to produce B, then det B = -det A.
- 3. If one row of A is multiplied by k to produce B, then $detB = k \cdot detA$.

Theorem 4. A square matrix A is invertible if and only if $\det A \neq 0$.

Theorem 5. If A is an $n \times n$ matrix, then $\det A^T = \det A$.

Theorem 6. If A and B are $n \times n$ matrices, then $\det AB = (\det A)(\det B)$.

Example 1. Find the determinant by row reduction to echelon form. $\begin{vmatrix} 1 & 5 & -3 \\ 3 & -3 & 3 \\ 2 & 13 & -7 \end{vmatrix}$