2.3 Characterization of Invertible Matrices

Theorem 8 (The Invertible Matrix Theorem). Let A be a square $n \times n$ matrix. Then the following are equivalent.

- 1. A is an invertible matrix.
- 2. A is row equivalent to the $n \times n$ identity matrix.
- 3. A has n pivot positions.
- 4. The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- 5. The columns of A form a linearly independent set.
- 6. The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one.
- 7. The equation $A\mathbf{x} = \mathbf{b}$ has at least one solution for each $\mathbf{b} \in \mathbb{R}^n$.
- 8. The columns of A span \mathbb{R}^n .
- 9. The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^n onto \mathbb{R}^n .
- 10. There is an $n \times n$ matrix C such that CA = I.
- 11. There is an $n \times n$ matrix D such that AD = I.
- 12. A^T is an invertible matrix.

The statement 7 in Theorem 8 could also be written as "The equation $A\mathbf{x} = \mathbf{b}$ has a unique solution for each $\mathbf{b} \in \mathbb{R}^n$. The following fact follows from Theorem 8.

Fact. Let A and B be square matrices. If AB = I, then A and B are both invertible, with $B = A^{-1}$ and $A = B^{-1}$.

The Invertible Matrix Theorem divides the set of all $n \times n$ matrices into two disjoint classes: th invertible matrices, and the noninvertible matrices. Each statement in the theorem describes a property of every $n \times n$ invertible matrix. The negation of a statement in the theorem describes a property of every $n \times n$ noninvertible matrix. For instance, an $n \times n$ noninvertible matrix is not row equivalent to I_n , does not have n pivot positions, and has linearly dependent columns.

Recall that matrix multiplication corresponds to composition of linear transformations. When a matrix A is invertible, the equation $A^{-1}A\mathbf{x} = \mathbf{x}$ can be viewed as a statement about linear transformations.

A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is said to be invertible if there exists a function $S: \mathbb{R}^n \to \mathbb{R}^n$ such that

$$S(T(\mathbf{x})) = \mathbf{x}$$
 for all $\mathbf{x} \in \mathbb{R}^n$ (1)

$$T(S(\mathbf{x})) = \mathbf{x} \quad \text{for all } \mathbf{x} \in \mathbb{R}^n$$
 (2)

Theorem 9. Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation and let A be the standard matrix for T. Then T is invertible if and only if A is an invertible matrix. in that case, the linear transformation S given by $S(\mathbf{x}) = A^{-1}\mathbf{x}$ is the unique function satisfying equations (1) and (2).

Example 1. Determine which of the following matrices are invertible.

$$1. \begin{bmatrix} -4 & 6\\ 6 & -9 \end{bmatrix}$$
$$2. \begin{bmatrix} 1 & -5 & -4\\ 0 & 3 & 4\\ -3 & 6 & 0 \end{bmatrix}$$