1.4 The Matrix Equation $A\mathbf{x} = \mathbf{b}$

Definition. If A is an $m \times n$ matrix, with columns $\mathbf{a}_1, \ldots, \mathbf{a}_n$, and if \mathbf{x} is in \mathbb{R}^n , then the product of A and \mathbf{x} , denoted by $A\mathbf{x}$, is the linear combination of the columns of A using the corresponding entries in \mathbf{x} as weights; that is,

$$A\mathbf{x} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n$$

Note that $A\mathbf{x}$ is defined only if the number of columns of A equals the number of entries in \mathbf{x} . The equation $A\mathbf{x} = \mathbf{b}$ is called a matrix equation.

Theorem 3. If A is an $m \times n$ matrix, with columns $\mathbf{a}_1, \ldots, \mathbf{a}_n$, and if \mathbf{b} is in \mathbb{R}^m , the matrix equation $A\mathbf{x} = \mathbf{b}$ has the same solution set as the vector equation $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n = \mathbf{b}$, which, in turn, has the same solution set as the system of linear equations whose augmented matrix is $[\mathbf{a}_1 \quad \mathbf{a}_2 \quad \cdots \quad \mathbf{a}_n \quad \mathbf{b}]$.

The equation $A\mathbf{x} = \mathbf{b}$ has a solution if and only if **b** is a linear combination of the columns of A.

Theorem 4. Let A be an $m \times n$ matrix. Then the following statements are logically equivalent. That is, for a particular A, either they are all true statements or they are all false.

- 1. For each **b** in \mathbb{R}^m , the equation $A\mathbf{x} = \mathbf{b}$ has a solution.
- 2. Each **b** in \mathbb{R}^m is a linear combination of the columns of A.
- 3. The columns of A span \mathbb{R}^m .
- 4. A has a pivot position in every row.

If the product $A\mathbf{x}$ is defined, then the *i*th entry in $A\mathbf{x}$ is the sum of the products of corresponding entries from row *i* of *A* and from the vector \mathbf{x} .

Definition. The matrix with 1's on the diagonal and 0's elsewhere is called an identity matrix and is denoted by *I*.

Theorem 5. If A is an $m \times n$ matrix, **u** and **v** are vectors in \mathbb{R}^n , and c is a scalar, then:

1.
$$A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$$

2.
$$A(c\mathbf{u}) = c(A\mathbf{u})$$

The proof follows from the definition of matrix multiplication and multiplication in real numbers.

Example 1. Compute the product using (a) the definition, and (b) the rowvector rule for computing Ax. If a product is undefined, explain why.

 $1. \begin{bmatrix} 2\\ 6\\ -1 \end{bmatrix} \begin{bmatrix} 5\\ -1 \end{bmatrix}$ $2. \begin{bmatrix} 8 & 3 & -4\\ 5 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}$

Example 2. Use the definition of Ax to write the matrix equation as a vector equation, or vice versa.

	7	-3]		[1]
1.	2	1	$\left[\begin{array}{c} -2\\ -5 \end{array}\right] =$	-9
	9	-6		12
	-3	2		-4

2.
$$z_1 \begin{bmatrix} 4 \\ -2 \end{bmatrix} + z_2 \begin{bmatrix} -4 \\ 5 \end{bmatrix} + z_3 \begin{bmatrix} -5 \\ 4 \end{bmatrix} + z_4 \begin{bmatrix} 3 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 13 \end{bmatrix}$$

Example 3. Write the system as a vector equation and then as a matrix equation.

$$8x_1 - x_2 = 4$$

$$5x_1 + 4x_2 = 1$$

$$x_1 - 3x_2 = 2$$

Example 4. Given A and **b** in, write the augmented matrix for the linear system that corresponds to the matrix equation $A\mathbf{x} = \mathbf{b}$. Then solve the system and write the solution as a vector.

$$A = \begin{bmatrix} 1 & 2 & 1 \\ -3 & -1 & 2 \\ 0 & 5 & 3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$$

Example 5. Can every vector in \mathbb{R}^4 be written as a linear combination of the columns of the following matrix? Do the columns of this matrix span \mathbb{R}^3 ?