
16.7 Surface Integrals

Parametric Surfaces

Suppose we have a function f(x, y, z) over a surface S, given by

r⃗(u, v) = ⟨x(u, v), y(u, v), z(u, v)⟩, (u, v) ∈ D.

We divide the region D into small subregions, each with dimensions ∆u ×∆v. Then the surface S is also
divided into corresponding patches Sij . We evaluate the function f at some point P ∗

ij in each patch and
multiply the function value by the area of the patch, ∆Sij . Adding all these products, would give us the
Riemann sum

m∑
i=1

n∑
j=1

f(P ∗
ij)∆Sij .

The limit of this Riemann sum, as the number of patches increases without bound, is the surface integral of
f over the surface S: ¨

S

f(x, y, z) dS = lim
m,n→∞

m∑
i=1

n∑
j=1

f(P ∗
ij)∆Sij .

And ¨

S

f(x, y, z) dS =

¨

D

f(r⃗(u, v))|r⃗u × r⃗v| dA.

Remark. We saw that we may integrate a function over a curve, called a line integral. If the function is 1,
then the line integral is the length of the curve:

ˆ
C

f(x, y, z) ds =

ˆ b

a

f(r⃗(t))|r⃗′(t)| dt

and ˆ
C

1 ds = L.

Similarly, the surface integral is the integral over a surface. If the function is 1, the surface integral gives us
the area of the surface. ¨

S

1 dS =

¨

D

|r⃗u × r⃗v| dA = A(S)

as we saw last time.

When z = g(x, y), we can regard x and y as the parameters. Then the surface integral becomes

¨

S

f(x, y, z) dS =

¨

D

f(x, y, g(x, y))

√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

dA.

As usual, if S is a surface with equation y = h(x, z), then we would regard x and z as the parameters.

Example 1. Evaluate ¨

S

y2z2 dS,

where S is the part of the cone y =
√
x2 + z2 given by 0 ≤ y ≤ 5.
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Oriented Surfaces

Example 2. The surface with parametric equations

x = 2 cos θ + r cos(θ/2), y = 2 sin θ + r cos(θ/2), z = r sin(θ/2), −1

2
≤ r ≤ 1

2
, 0 ≤ θ ≤ 2π

is called a Möbius strip. A Möbius strip has only one side. We say a Möbius strip is a nonorientable surface.

From now on, we only consider orientable surfaces, that is, surfaces that have two sides.
We begin with a surface that has a tangent plane at every point on S. There are two possible choices

for a unit normal vector at each point, call them n⃗1 and n⃗2 = −n⃗1. If it is possible to choose a unit normal
vector n⃗ at every point (x, y, z) so that n⃗ varies continuously over S, we say S is an oriented surface and
the given choice of n⃗ provides S with an orientation. There are two possible orientations for any orientable
surface. For a closed surface, that is, a surface that is the boundary of a solid region E, the convention is that
the positive orientation is the one for which the normal vectors point outward from E. The inward-pointing
normals give the negative orientation.

Surface Integrals of Vector Fields

Suppose S is an oriented surface with unit normal vector n⃗. Suppose S is porous, like a fishing net across
a stream, and the stream flowing through S with density ρ(x, y, z) and velocity field v⃗(x, y, z). The rate of
flow, mass per unit time per unit area, is ρv⃗. If we divide S into small patches, the mass of the stream per
unit time crossing a small patch Sij in the direction of n⃗ is approximately (ρv⃗ · n⃗)A(Sij), where ρ, v⃗, and n⃗
are evaluated at some point on Sij . We may add all these quantities and obtain the following integral as the
result: ¨

S

ρv⃗ · n⃗ dS⃗.

The above integral is the rate of flow through S. If F⃗ = ρv⃗, then the integral becomes

¨

S

F⃗ · n⃗ dS.

Definition 1. If F⃗ is a continuous vector field on an oriented surface S with unit normal vector n⃗, then
surface integral of F⃗ over S is ¨

S

F⃗ · dS⃗ =

¨

D

F⃗ · n⃗ dS.

This integral is also called the flux of F⃗ across S.

The above formula means the surface integral of a vector field over S is equal to the surface integral of
its normal component over S.

If S is given by r⃗(u, v), then

n⃗ =
r⃗u × r⃗v
|r⃗u × r⃗v|

and
¨

S

F⃗ · dS⃗ =

¨

S

F⃗ · r⃗u × r⃗v
|r⃗u × r⃗v|

dS

=

¨

D

[
F⃗ · r⃗u × r⃗v

|r⃗u × r⃗v|

]
|r⃗u × r⃗v| dA.
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Therefore, ¨

S

F⃗ · dS⃗ =

¨

D

F⃗ · (r⃗u × r⃗v) dA.

If we have z = g(x, y), then we may take x and y as the parameters, and

F⃗ · (r⃗u × r⃗v) = ⟨P,Q,R⟩ ·
〈
−∂g

∂x
,−∂g

∂y
, 1

〉
.

Thus the formula for flux becomes
¨

S

F⃗ · dS⃗ =

¨

D

(
−P

∂g

∂x
−Q

∂g

∂y
+R

)
dA.

The above formula is for when S is upward-oriented. For a downward orientation, we multiply by −1. Similar
formulas apply when y = h(x, z) or x = k(y, z).

Example 3. Evaluate the surface integral
˜
S

F⃗ · dS⃗ for the vector field

F⃗ (x, y, z) = x ı̂+ y ȷ̂+ 5 k̂

and the oriented surface S, where S is the boundary of the region enclosed by the cylinder x2 + z2 = 1 and
the planes y = 0 and x+ y = 2.

The flux is not just for a fluid. If E⃗ is an electric field, then the surface integral
˜
S

E⃗ · dS⃗ is the electric

flux of E⃗. Gauss’s Law says that the net charge enclosed by a closed surface S is

Q = ε0

¨

S

E⃗ · dS⃗,

where ε0 is a constant, called the permitivity of free space.

Homework

§16.7, page 1132: 16, 18, 23, 24, 26, 29.
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