16.3 The Fundamental Theorem for Line Integrals

Recall that by the Fundamental Theorem of Calculus we have

$$\int_{a}^{b} F'(x) \, dx = F(b) - F(a),$$

where F' is continuous on [a, b]. Thus the integral of a rate of change is the net change.

Now, if we think of ∇f as a derivative of f, we can see the following version of the Fundamental Theorem for line integrals.

Remark. The following theorem says that we can evaluate the line integral of a conservative vector field, that is, the gradient field of a potential function f, simply by knowing the value of f at the endpoints of C. Therefore, the line integral of a conservative vector field is independent of the path C, it only depends on the initial point and the terminal point of C.

Theorem. Let C be a smooth curve given by the vector function $\vec{r}(t)$, $a \le t \le b$. Let f be a differentiable function of two or three variables whose gradient vector ∇f is continuous on C. Then

$$\int_C \nabla f \cdot d\vec{r} = f(\vec{r}(b)) - f(\vec{r}(a)).$$

Proof.

$$\begin{split} \int_{C} \nabla f \cdot d\vec{r} &= \int_{a}^{b} \nabla f(\vec{r}(t)) \cdot \vec{r'}(t) \ dt \\ &= \int_{a}^{b} \left(\frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt} + \frac{\partial f}{\partial z} \frac{dz}{dt} \right) \ dt \\ &= \int_{a}^{b} \frac{d}{dt} f(\vec{r}(t)) \ dt \\ &= f(\vec{r}(b)) - f(\vec{r}(a)). \end{split}$$

A curve is called *closed* if the terminal point and the initial point are the same, that is, if $\vec{r}(a) = \vec{r}(b)$. If $\int_C \vec{F} \cdot d\vec{r}$ is independent of path, then the line integral over a closed path is zero.

Theorem. $\int_C \vec{F} \cdot d\vec{r}$ is independent of path if and only if $\int_C \vec{F} \cdot d\vec{r} = 0$ for every closed path C.

Proof. (\Rightarrow) Suppose $\int_C \vec{F} \cdot d\vec{r}$ is independent of path. We want to show that $\int_C \vec{F} \cdot d\vec{r} = 0$ for every closed path C.

Let C be an arbitrary closed path containing distinct points A and B. Let C_1 and C_2 be the two distinct paths from A to B along C. Then we have $C = C_1 + (-C_2)$. Thus

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{C_1} \vec{F} \cdot d\vec{r} + \int_{-C_2} \vec{F} \cdot d\vec{r} = \int_{C_1} \vec{F} \cdot d\vec{r} - \int_{C_2} \vec{F} \cdot d\vec{r} = 0,$$

because by the assumption $\int_{C_1} \vec{F} \cdot d\vec{r} = \int_{C_2} \vec{F} \cdot d\vec{r}$.

(\Leftarrow) Suppose $\int_C \vec{F} \cdot d\vec{r} = 0$ for every closed path C. We want to show that $\int_C \vec{F} \cdot d\vec{r}$ is independent of path.

Let C_1 and C_2 be arbitrary distinct paths from point A to point B. Then $C = C_1 + (-C_2)$ is a closed path and

$$0 = \int_{C} \vec{F} \cdot d\vec{r} = \int_{C_1} \vec{F} \cdot d\vec{r} + \int_{-C_2} \vec{F} \cdot d\vec{r} = \int_{C_1} \vec{F} \cdot d\vec{r} - \int_{C_2} \vec{F} \cdot d\vec{r}.$$

$$\vec{r} = \int_{C} \vec{F} \cdot d\vec{r}.$$

Therefore $\int_{C_1} \vec{F} \cdot d\vec{r} = \int_{C_2} \vec{F} \cdot d\vec{r}$.

Theorem. Suppose that \vec{F} is a vector field that is continuous on an open connected region D. If $\int_C \vec{F} \cdot d\vec{r}$ is independent of path in D, then \vec{F} is a conservative vector field on D. That is, there exists a function f such that $\nabla f = \vec{F}$.

The question is how to determine whether or not a vector field \vec{F} is conservative? Suppose that we know $\vec{F} = \langle P, Q \rangle$ is a conservative, where P and Q have continuous first-order partial derivatives. Then we know that there exists a function f such that $\vec{F} = \nabla f$ and

$$P = \frac{\partial f}{\partial x}$$
 and $Q = \frac{\partial f}{\partial y}$

Then, by Clairaut's Theorem,

$$\frac{\partial P}{\partial y} = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial Q}{\partial x}$$

Theorem. If $\vec{F}(x,y) = \langle P(x,y), Q(x,y) \rangle$ is a conservative vector field, where P and Q have continuous first-order partial derivatives on a domain D, then throughout D we have

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}.$$

A simple curve is a curve that does not intersect itself. A simply connected region is a connected region D such that every simple closed curve in D encloses only points that are in D. Thus a simply connected region contains no hole and cannot consist of two separate pieces. The converse of the above theorem is true for these regions and curves.

Theorem. Let $\vec{F} = P\hat{\imath} + Q\hat{\jmath}$ be a vector field on an open simply connected region D. Suppose that P and Q have continuous first-order partial derivatives and

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \quad throughout \ D.$$

Then \vec{F} is conservative.

We use "partial integration" to find the potential function f.

Example 1. Determine whether or not \vec{F} is a conservative vector field. If it is, find a function f such that $\vec{F} = \nabla f$.

$$\vec{F}(x,y) = ye^x\hat{\imath} + (e^x + e^y)\hat{\jmath}.$$

Example 2. For

$$\vec{F}(x,y) = (1+xy)e^{xy}\hat{i} + x^2e^{xy}\hat{j} C: \vec{r}(t) = \cos t\hat{i} + 2\sin t\hat{j}, \quad 0 \le t \le \frac{\pi}{2}.$$

- (a) find a function f such that $\vec{F} = \nabla f$
- (b) use part (a) to evaluate $\int_C \vec{F} \cdot d\vec{r}$ along the curve C.

Example 3. Show that the line integral is independent of path and evaluate the integral.

$$\int_C \sin y \, dx + (x \cos y - \sin y) \, dy,$$

C is any path from (2,0) to $(1,\pi)$.