
16.2 Line Integrals

Recall that we defined the single integral over an interval [a, b]:
∫ b

a
f(x) dx. Now we would like to define the

single integral over a curve C, not just the interval on the x-axis. Suppose C is a curve in R2 such that for
the position (x, y), each x and y is a function of a parameter t, with a ≤ t ≤ b. In other words, we have

r⃗(t) = ⟨x(t), y(t)⟩. Suppose C is a smooth curve, that is, r⃗′ is continuous and r⃗′(t) ̸= 0. If we divide the
curve C into small segments, or sub-arcs, each with length ∆si, we define the line integral of f along C as∫

C

f(x, y) ds = lim
n→∞

n∑
i=1

f(x∗
i , y

∗
i )∆si,

if the limit exists.
Recall that the length of curve C is

L =

∫ b

a

√(
dx

dt

)2

+

(
dx

dt

)2

dt.

Then the line integral is ∫
C

f(x, y) ds =

∫ b

a

f(x(t), y(t))

√(
dx

dt

)2

+

(
dx

dt

)2

dt.

Effectively, we have

ds =

√(
dx

dt

)2

+

(
dx

dt

)2

dt.

The value of the line integral does not depend on the parameterization of the curve, as long as we traverse
the curve exactly once as t increases from a to b. Thus our original single integral over an interval becomes
a special case, where we evaluate a line integral from (a, 0) to (b, 0), with x = t and y = 0:∫

C

f(x, y) ds =

∫ b

a

f(x, 0) dx.

Just as we could interpret the single integral as the area under a nonnegative curve, we may interpret the
line integral of a nonnegative curve as the area of the “curtain” under the curve.

Example 1. Evaluate the line integral∫
C

x

y
ds, C : x = t3, y = t4, 1 ≤ t ≤ 2.

If C is a piecewise smooth curve, that is, if C is a union of a finite number of smooth curves C1, C2, . . . , Cn,
where each Ci is a smooth curve and the initial point of Ci+1 is the terminal point of Ci, then we define the
line integral of f along C as the sum of the integrals of f along each of the smooth pieces of C:∫

C

f(x, y) ds =

∫
C1

f(x, y) ds+

∫
C2

f(x, y) ds+ · · ·+
∫
Cn

f(x, y) ds.

We may express a line integral in terms of x or in terms of y:∫
C

f(x, y) dx =

∫ b

a

f(x(t), y(t))x′(t) dt, line integral with respect to x∫
C

f(x, y) dy =

∫ b

a

f(x(t), y(t))y′(t) dt, line integral with respect to y.
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Thus our original line integral is a line integral with respect to arc length. It is customary to write the line
integrals with respect to x and y together:∫

C

P (x, y) dx+

∫
C

Q(x, y) dy =

∫
C

P (x, y) dx+Q(x, y) dy.

We may have to set up the parametric equations so that we would start at a point on C and end at another
point on C. Recall the parametric equation for a line segment that starts at P0(x0, y0) and ends at P1(x1, y1):

r⃗(t) = ⟨x0, y0⟩+ t⟨x1 − x0, y1 − y0⟩, 0 ≤ t ≤ 1.

In general, the value of the line integral depends on the path as well as on the endpoints of the curve.
Also, for line integrals with respect to x or with respect to y, if we switch the direction, the sign of the
integral also reverses.∫

−C

f(x, y) dx = −
∫
C

f(x, y) dx and

∫
−C

f(x, y) dy = −
∫
C

f(x, y) dy.

This is because ∆xi and ∆yi change sign when we reverse the orientation of C. However, since ∆si is always
positive, the sign of the line integral with respect to arc length does not change when we reverse the traverse
of the path: ∫

−C

f(x, y) ds =

∫
C

f(x, y) ds.

We may apply the same concepts for line integrals in space R3. Thus∫
C

f(x, y, z) ds =

∫ b

a

f(x(t), y(t), z(t))

√(
dx

dt

)2

+

(
dx

dt

)2

+

(
dx

dt

)2

dt =

∫ b

a

f(r⃗(t))|r⃗′(t)| dt,

where a ≤ t ≤ b. And when f(x, y, z) = 1, we would get the arc length:∫
C

ds =

∫ b

a

|r⃗′(t)| dt = L.

Line Integrals of Vector Fields

Recall that the work done by a variable force f(x) in moving an object from a to b along the x-axis is

W =
∫ b

a
f(x) dx. The work done by a constant force F⃗ in moving a particle from a point P to another point

Q in space is W = F⃗ · P⃗Q, where P⃗Q is the displacement vector. If T⃗ (ti) is the unit tangent vector at point

Pi, then the work done by the force field F⃗ is the limit of the Riemann sum

n∑
i=1

[F⃗ (xi, yi, zi) · T⃗ (xi, yi, zi)]∆si,

that is,

W =

∫
C

F⃗ (x, y, z) · T⃗ (x, y, z) ds =
∫
C

F⃗ · T⃗ ds.

Definition 1. Let F⃗ be a continuous vector field defined on a smooth curve C given by vector function
r⃗(t), a ≤ t ≤ b. Then the line integral of F⃗ along C is∫

C

F⃗ · dr⃗ =

∫ b

a

F⃗ (r⃗(t)) · r⃗′(t) dt =
∫
C

F⃗ · T⃗ ds,

where T⃗ = r⃗′(t)/|r⃗′(t)| is the unit tangent vector at the point (x, y, z). Therefore dr⃗ = r⃗′(t) dt.
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Suppose that F⃗ = ⟨P,Q,R⟩. Using the above definition, we have∫
C

F⃗ · dr⃗ =

∫ b

a

F⃗ (r⃗(t)) · r⃗′(t) dt

=

∫ b

a

⟨P,Q,R⟩ · ⟨x′(t), y′(t), z′(t)⟩ dt

=

∫ b

a

[Px′ +Qy′ +Rz′] dt.

The last integral is precisely the line integral. Therefore,∫
C

F⃗ · dr⃗ =

∫
C

P dx+Q dy +R dz,

where F⃗ = ⟨P,Q,R⟩.

Example 2. Evaluate
∫
C
F⃗ · dr⃗, where C is given by the vector function r⃗(t).

F⃗ (x, y, z) = ⟨x, y, xy⟩

r⃗(t) = cos t̂ı+ sin tȷ̂+ tk̂, 0 ≤ t ≤ π.

Remark. When we reverse the direction of travel along C, the unit tangent vector T⃗ also changes direction.
Therefore, ∫

−C

F⃗ · dr⃗ = −
∫
C

F⃗ · dr⃗.

Example 3. A 160-lb man carries a 25-lb can of paint up a helical staircase that encircles a silo with a
radius of 20 ft. The silo is 90 ft high and the man makes exactly three complete revolutions climbing to the
top. Suppose there is a hole in the can of paint and 9 lb of paint leaks steadily out of the can during the
man’s ascent. How much work is done?

Homework

§16.2, page 1084: 1, 3, 17, 20, 32, 42.
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