
15.9 Change of Variables in Multiple Integrals

Once again, we start with the single variable integral. Recall that we may write∫ b

a

f(x) dx =

∫ d

c

f(x(t))x′(t) dt =

∫ d

c

f(x(t))
dx

dt
dt (1)

where x(t) is a function of t, a = x(c), and b = x(d).
Now let’s consider functions of two variables. We have already done change of variables when we inte-

grated a function in Cartesian and in polar coordinates.∫∫
R

f(x, y) dA =

∫∫
S

f(r cos θ, r sin θ)r dr dθ

where S is the region in the rθ-plane that corresponds to the region R in the xy-plane.
The polar-Cartesian change of variables is a special case of the more general transformation T , from the

uv-plane to the xy-plane. A transformation is a function that maps a region S in uv-plane to the region R in
the xy-plane. Thus R is the image of S under T . We say the image of (u, v) under T is (x, y) = T (u, v). If T
is one-to-one, then T has an inverse map T−1 that maps (x, y) to (u, v), that is T−1(x, y) = (u, v). We also
assume that T is a C1 transformation, which means that the functions x(u, v) and y(u, v) have continuous
first-order partial derivatives.

Consider a small rectangular region S in the uv-plane with lower-right corner (u0, v0) and the sides of
lengths ∆u and ∆v. The position vector of the image of the point (u, v) is r⃗(u, v) = x(u, v)̂ı+ y(u, v)ȷ̂. The
image of the lower side of S, which is

u0 ≤ u ≤ u0 +∆u, v = v0

is r⃗(u, v0). The tangent vector at (x0, y0) = T (u0, v0) to this image curve is

r⃗u =
∂x

∂u
ı̂+

∂y

∂u
ȷ̂.

Similarly, the tangent vector at (x0, y0) to the image curve of the left side of S,

u = u0, v0,≤ v ≤ v0 +∆v

is

r⃗v =
∂x

∂v
ı̂+

∂y

∂v
ȷ̂.

When S is small, the region R is also small and we may say R is approximately a parallelogram determined
by the vectors

r⃗(u0 +∆u, v0)− r⃗(u0, v0)

and
r⃗(u0, v0 +∆v)− r⃗(u0, v0).

We know

r⃗u = lim
∆u→0

r⃗(u0 +∆u, v0)− r⃗(u0, v0)

∆u
.

Therefore
r⃗(u0 +∆u, v0)− r⃗(u0, v0) ≈ ∆ur⃗u.

Similarly,
r⃗(u0, v0 +∆v)− r⃗(u0, v0) ≈ ∆vr⃗v.
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So we are saying that R is approximately a parallelogram with sides ∆ur⃗u and ∆vr⃗v. The area of R is thus
approximately the area of this parallelogram, which is the size of the cross product of the vectors of its sides:

|(∆ur⃗u)× (∆vr⃗v)| = |r⃗u × r⃗v|∆u∆v. (2)

The cross product is

r⃗u × r⃗v =

∣∣∣∣∣∣
ı̂ ȷ̂ k̂
∂x
∂u

∂y
∂u 0

∂x
∂v

∂y
∂v 0

∣∣∣∣∣∣ =
∣∣∣∣ ∂x

∂u
∂y
∂u

∂x
∂v

∂y
∂v

∣∣∣∣ k̂ =

∣∣∣∣ ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣ k̂ (3)

The determinant in Equation (3) is called the Jacobian of the transformation and has a special notation.

Definition 1. The Jacobian of the transformation T given by x(u, v) and y(u, v) is

∂(x, y)

∂(u, v)
=

∣∣∣∣ ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣ = ∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u
.

Thus the area of R is approximately

∆A ≈
∣∣∣∣∂(x, y)∂(u, v)

∣∣∣∣∆u∆v (4)

where we evaluate the Jacobian at (u0, v0).
Now we may divide every region S in uv-plane into small rectangles whose images in xy-plane are small

parallelograms. We may write∫∫
R

f(x, y) dA ≈
m∑
i=1

n∑
j=1

f(xi, yj)∆A

≈
m∑
i=1

n∑
j=1

f(x(ui, vi), y(uj , vj))∆A ≈
∣∣∣∣∂(x, y)∂(u, v)

∣∣∣∣∆u∆v

Thus we have the following theorem.

Theorem 1 (Change of Variables in a Double Integral). Suppose that T is a C1 transformation whose
Jacobian is nonzero and that T maps a region S in the uv-plane onto a region R in the xy-plane. Suppose
that f is continuous on R and that R and S are type I or type II plane regions. Suppose also that T is
one-to-one, except perhaps on the boundary of S. Then∫∫

R

f(x, y) dA =

∫∫
S

f(x(u, v), y(u, v))

∣∣∣∣∂(x, y)∂(u, v)

∣∣∣∣ du dv.

The above theorem says that we change from an integral in x and y to an integral in u and v by expressing
x and y in terms of u and v and writing

dA =

∣∣∣∣∂(x, y)∂(u, v)

∣∣∣∣ du dv.

Notice the similarity between this theorem and the one-dimensional formula in Equation (1).

Example 1. Show the formula for integration in polar coordinates using the Jacobian.
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Proof. We have
x = r cos θ and y = r sin θ.

Then the Jacobian of T is

∂(x, y)

∂(r, θ)
=

∣∣∣∣ ∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

∣∣∣∣ = ∣∣∣∣ cos θ −r sin θ
sin θ r cos θ

∣∣∣∣ = r cos2 θ + r sin2 θ = r.

Thus the theorem gives ∫∫
R

f(x, y) dx dy =

∫∫
S

f(r cos θ, r sin θ)

∣∣∣∣∂(x, y)∂(r, θ)

∣∣∣∣ dr dθ

=

∫ β

α

∫ b

a

f(r cos θ, r sin θ)r dr dθ,

which the same formula that we had before.

Example 2. Evaluate the integral ∫∫
R

(4x+ 8y) dA,

where R is the parallelogram with vertices (−1, 3), (1,−3), (3,−1), (1, 5) and x = 1
4 (u+ v), y = 1

4 (v − 3u).

Example 3. Evaluate the integral by making an appropriate change of variables.∫∫
R

sin(9x2 + 4y2) dA

where R is the region in the first quadrant bounded by the ellipse 9x2 + 4y2 = 1.

Next time we will see triple integrals. For now, just note that the Jacobian for a transformation T that
maps a region S in uvw-space onto a region R in xyz-space is a 3× 3 determinant:

∂(x, y, z)

∂(u, v, w)
=

∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

∣∣∣∣∣∣ .
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