15.4 Applications of Double Integrals

15.4.1 Density and Mass

Suppose the density, in units of mass per unit area, at a point (x, y) in a region D is $\rho(x, y)$, where ρ is a continuous function on D. Thus

$$\rho(x, y) = \lim \frac{\Delta m}{\Delta A}$$

where Δm and ΔA are the mass and area of a small rectangle that contains (x, y) and the limit is taken as the dimensions of the rectangle approach 0. Using a Riemann sum, we obtain

$$m \approx \sum_{i=1}^{k} \sum_{j=1}^{l} \rho(x_{ij}^*, y_{ij}^*) \Delta A$$

The limit of the Riemann sum becomes an integral:

$$m = \lim_{k,l \to \infty} \sum_{i=1}^{k} \sum_{j=1}^{l} \rho(x_{ij}^{*}, y_{ij}^{*}) \Delta A = \iint_{D} \rho(x, y) \ dA.$$

15.4.2 Moments and Center of Mass

Recall that the mass of each small rectangle is $\rho(x_{ij}^*, y_{ij}^*)\Delta A$. Thus the moment of this mass with respect to x axis is

$$[\rho(x_{ij}^*, y_{ij}^*)\Delta A]y_{ij}^*$$

The moment of the entire lamina about the x-axis is

$$M_x = \lim_{m,n \to \infty} \sum_{i=1}^m \sum_{j=1}^n y_{ij}^* \rho(x_{ij}^*, y_{ij}^*) \Delta A = \iint_D y \rho(x, y) \ dA.$$

Similarly, the moment about the y-axis is

$$M_y = \lim_{m,n \to \infty} \sum_{i=1}^m \sum_{j=1}^n x_{ij}^* \rho(x_{ij}^*, y_{ij}^*) \Delta A = \iint_D x \rho(x, y) \ dA.$$

We define the center of mass (\bar{x}, \bar{y}) so that $m\bar{x} = M_y$ and $m\bar{y} = M_x$. Physically, the lamina behaves as if its entire mass is concentrated at its center of mass. Therefore the lamina balances horizontally when supported at its center of mass.

The coordinates (\bar{x}, \bar{y}) of the center of mass of a lamina occupying the region D and having density function $\rho(x, y)$ are

$$\bar{x} = \frac{M_y}{m} = \frac{1}{m} \iint_D x\rho(x,y) \ dA, \quad \bar{y} = \frac{M_x}{m} = \frac{1}{m} \iint_D y\rho(x,y) \ dA$$

where the mass m is

$$m = \iint_D \rho(x, y) \ dA.$$

Example 1. Find the mass and center of mass of the lamina that occupies the region D bounded by y = x+2and $y = x^2$ and has density $\rho(x, y) = kx^2$.

15.4.3 Probability

The probability density function f of a continuous random variable X has the properties that $f(x) \ge 0$ for all x and $\int_{-\infty}^{\infty} f(x) dx = 1$. The probability that X is between a and b is

$$P(a \le X \le b) = \int_a^b f(x) \ dx.$$

The probability that for random variables X and Y, the point (X, Y) lies in a region D is the integral of the joint density function f:

$$P(X,Y) \in D = \iint_{D} f(x,y) \ dA.$$

Thus

$$P(a \le X \le b, c \le Y \le d) = \int_a^b \int_c^d f(x, y) \, dy \, dx$$

Because f is a probability density function, we have

$$f(x, y) \ge 0$$

and

$$\iint_{\mathbb{R}^2} f(x,y) \ dA = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) dx dy = 1.$$

15.4.4 Expected Values

The mean of a single random variable X with density function f is

$$\mu = \int_{-\infty}^{\infty} x f(x, y) \, dx.$$

We define the X-mean and Y-mean of random variables X and Y, with joint density function f, also called the expected values of X and Y, as

$$\mu_1 = \iint_{\mathbb{R}^2} x f(x, y) \ dA, \quad \mu_2 = \iint_{\mathbb{R}^2} y f(x, y) \ dA.$$

These formulas are the same as the formulas for the center of mass, when the total mass is 1, because the total probability is 1.

Example 2. The joint density function for a pair of random variables X and Y is

$$f(x,y) = \begin{cases} Cx(1+y) & \text{if } 0 \le x \le 1, 0 \le y \le 2\\ 0 & \text{otherwise} \end{cases}$$

- (a) Find the value of the constant C.
- (b) Find $P(X \le 1, Y \le 1)$.
- (c) Find $P(X + Y \leq 1)$.