
15 Multiple Integrals

15.1 Double Integrals over Rectangles

15.1.1 Review of the Definite Integral

Let’s review the integral definition for a single-variable function. If f(x) is defined for a ≤ x ≤ b, we divided
the interval [a, b] into n subintervals of equal width ∆x = b−a

n and we chose sample point x∗
i in each ith

subinterval. Then the limit of the Riemann sum became the definite integral:∫ b

a

f(x) dx = lim
n→∞

n∑
i=1

f(x∗
i )∆x.

When f(x) ≥ 0, the integral is the area under the curve f from a to b.

15.1.2 Volumes and Double Integrals

Now consider a function f(x, y). First suppose f(x, y) ≥ 0 over a closed rectangle R, with

R = [a, b]× [c, d] = {(x, y) | a ≤ x ≤ b, c ≤ y ≤ d}.

If we let z = f(x, y), then the graph of f is a surface above the rectangle R. We may estimate the volume
under this surface by dividing R into sub-rectangles. We divide [a, b] into m subintervals of equal width
∆x = b−a

m and we divide [c, d] into n subintervals of equal width ∆y = d−c
n . Thus the area of each sub-

rectangle is ∆A = ∆x∆y. We choose a sample point (x∗
ij , y

∗
ij) in each Rij and we approximate the part of

the volume that lies above Rij by the rectangular box (or column) with base Rij and height f(x∗
ij , y

∗
ij). The

volume of this box is base times height:

∆Vij = f(x∗
ij , y

∗
ij)∆A.

Thus the total volume is

V ≈
m∑
i=1

n∑
j=1

f(x∗
ij , y

∗
ij)∆A.

That is, we add all the volumes of the columns to approximate the total volume under the surface. As the
numbers m and n increase, our approximation becomes more accurate. Thus

V = lim
m,n→∞

m∑
i=1

n∑
j=1

f(x∗
ij , y

∗
ij)∆A.

The above sum is called a double Riemann sum. For a general function f(x, y) (not just nonnegative
functions), we define the double integral of f over the rectangle R as∫∫

R

f(x, y) dA = lim
m,n→∞

m∑
i=1

n∑
j=1

f(x∗
ij , y

∗
ij)∆A

and we say f is integrable if the limit exists. Thus if f(x, y) ≥ 0, then the volume of the solid that lies above
the rectangle R and below the surface z = f(x, y) is

V =

∫∫
R

f(x, y) dA.
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15.1.3 Iterated Integrals

Suppose that f is an integrable function of two variables over the rectangle R = [a, b]× [c, d]. The notation∫ d

c
f(x, y)dy means we hold x fixed and integrate f(x, y) with respect to y. This is called partial integration

with respect to y. Thus we obtain a function of x:

A(x) =

∫ d

c

f(x, y) dy.

Now we may integrate this function of x with respect to x:∫ b

a

A(x) dx =

∫ b

a

[∫ d

c

f(x, y)dy

]
dx.

The above integral is called an iterated integral. Usually we omit the brackets and write∫ b

a

∫ d

c

f(x, y) dy dx

to mean we first integrate with respect to y from c to d and then with respect to x from a to b. Similarly,∫ d

c

∫ b

a

f(x, y) dx dy =

∫ d

c

[∫ b

a

f(x, y) dx

]
dy

means we first integrate with respect to x, holding y fixed, from x = a to x = b, and then we integrate the
resulting function of y with respect to y from y = c to y = d. Thus in iterated integrals, we work from the
inside out.

Example 1. Calculate the iterated integral:∫ 1

0

∫ 1

0

√
s+ t ds dt

The following theorem shows that the order of integration usually does not matter.

Theorem (Fubini’s Theorem). If f is continuous on the rectangle

R = {(x, y) | a ≤ x ≤ b, c ≤ y ≤ d}
then ∫∫

R

f(x, y) dA =

∫ d

c

∫ b

a

f(x, y) dx dy =

∫ b

a

∫ d

c

f(x, y) dy dx.

More generally, this is true if f is bounded on R, f is discontinuous only on a finite number of smooth
curves, and the iterated integrals exist.

Remark. Sometimes an order of integration is easier to evaluate than the other order.

Example 2. Calculate the double integral:∫∫
R

(y + xy−2) dA, R = {(x, y) | 0 ≤ x ≤ 2, 1 ≤ y ≤ 2}

Remark. If f(x, y) = g(x)h(y), then we may separate the double integral into a product of two single
integrals. ∫∫

R

g(x)h(y) dA =

∫ b

a

g(x) dx

∫ d

c

h(y) dy, R = [a, b]× [c, d].

Example 3. Calculate the double integral:∫∫
R

tan θ√
1− t2

dA, R = {(θ, t) | 0 ≤ θ ≤ π

3
, 0 ≤ t ≤ 1

2
}
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