12.3 The Dot Product

There is a special way to "multiply" two vectors called the dot product. We define the dot product of $\vec{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ with $\vec{w}=\left\langle w_{1}, w_{2}, w_{3}\right\rangle$ as

$$
\vec{v} \cdot \vec{w}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle \cdot\left\langle w_{1}, w_{2}, w_{3}\right\rangle=v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3}
$$

Note that the dot product of two vectors is a number, not a vector. Obviously $\vec{v} \cdot \vec{v}=|\vec{v}|^{2}$ for all vectors $\vec{v} \in \mathbb{R}^{n}$. In particular, $\vec{v} \cdot \vec{v} \geq 0$ for all vectors \vec{v}, with equality if and only if $\vec{v}=0$. Furthermore, $\vec{v} \cdot \vec{w}=\vec{w} \cdot \vec{v}$. Other properties of the dot product are that for all vectors $\vec{v}, \vec{w}, \vec{u}$ and for all scalars a, we have

$$
\begin{aligned}
(\vec{u}+\vec{v}) \cdot \vec{w} & =\vec{u} \cdot \vec{w}+\vec{v} \cdot \vec{w} \\
(a \vec{v}) \cdot \vec{w} & =a(\vec{v} \cdot \vec{w})
\end{aligned}
$$

Two vectors \vec{u}, \vec{v} are said to be orthogonal if $\vec{u} \cdot \vec{v}=0$.

$$
\vec{v} \perp \vec{w} \Leftrightarrow \vec{v} \cdot \vec{w}=0 .
$$

Clearly $\overrightarrow{0}$ is orthogonal to every vector. Furthermore, $\overrightarrow{0}$ is the only vector that is orthogonal to itself.
The next theorem is over 2,500 years old.
Theorem (Pythagorean Theorem). If \vec{u}, \vec{v} are orthogonal, then

$$
|\vec{u}+\vec{v}|^{2}=|\vec{u}|^{2}+|\vec{v}|^{2}
$$

Proof. Suppose that \vec{u}, \vec{v} are orthogonal vectors. Then

$$
\begin{aligned}
|\vec{u}+\vec{v}|^{2} & =(\vec{u}+\vec{v}) \cdot(\vec{u}+\vec{v}) \\
& =|\vec{u}|^{2}+|\vec{v}|^{2}+\vec{u} \cdot \vec{v}+\vec{v} \cdot \vec{u} \\
& =|\vec{u}|^{2}+|\vec{v}|^{2},
\end{aligned}
$$

as desired.
Theorem. If θ is the angle between the vectors \vec{a} and \vec{b}, then

$$
\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta
$$

Proof. By the equivalence of the law of cosines and the dot product definition of $|\vec{a}-\vec{b}|^{2}$.
Corollary. If θ is the angle between the nonzero vectors \vec{a} and \vec{b}, then

$$
\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}
$$

Example 1. Determine whether the following vectors are orthogonal, parallel, or neither:
a) $\boldsymbol{u}=\langle-5,4,-2\rangle, \quad \boldsymbol{v}=\langle 3,4,-1\rangle$
b) $\boldsymbol{u}=9 \boldsymbol{i}-6 \boldsymbol{j}+3 \boldsymbol{k}, \quad \boldsymbol{v}=-6 \boldsymbol{i}+4 \boldsymbol{j}-2 \boldsymbol{k}$
c) $\boldsymbol{u}=\langle c, c, c\rangle, \quad \boldsymbol{v}=\langle c, 0,-c\rangle$

Example 2. Find the values of x such that the angle between the vectors $\langle 2,1,-1\rangle$ and $\langle 1, x, 0\rangle$ is 45°.

12.3.1 Direction Angles and Direction Cosines

The direction angles of a nonzero vector \vec{v} are the angles α, β, and γ, each between 0 and π, that the vector \vec{v} makes with the positive x-, y-, and z-axes, respectively. The cosines of these direction angles, $\cos \alpha, \cos \beta$, and $\cos \gamma$, are called the direction cosines of the vector \vec{v}. Using the previous corollary, we have

$$
\cos \alpha=\frac{\vec{v} \cdot \hat{\imath}}{|\vec{v}||\hat{\imath}|}=\frac{v_{1}}{|\vec{v}|}
$$

Similarly,

$$
\cos \beta=\frac{v_{2}}{|\vec{v}|} \quad \text { and } \quad \cos \gamma=\frac{v_{3}}{|\vec{v}|}
$$

Therefore

$$
\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1
$$

Furthermore,

$$
\vec{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle=\langle | \vec{v}|\cos \alpha,|\vec{v}| \cos \beta,|\vec{v}| \cos \gamma\rangle=|\vec{v}|\langle\cos \alpha, \cos \beta, \cos \gamma\rangle
$$

Therefore

$$
\frac{\vec{v}}{|\vec{v}|}=\langle\cos \alpha, \cos \beta, \cos \gamma\rangle
$$

That is, the direction cosines of \vec{v} are the components of the unit vector in the direction of \vec{v}.

12.3.2 Projections

The vector projection of \vec{w} onto \vec{v}, denoted by $\operatorname{proj}_{\vec{v}} \vec{w}$, is the shadow of \vec{w} on \vec{v}. The scalar projection of \vec{w} onto \vec{v}, also called the component of \vec{w} along \vec{v}, is defined to be the signed magnitude of the vector projection, which is the number $|\vec{w}| \cos \theta$, where θ is the angle between \vec{v} and \vec{w}. This is denoted by $\operatorname{comp}_{\vec{v}} \vec{w}$. When $\pi / 2<\theta \leq \pi$, we have $\operatorname{comp}_{\vec{v}} \vec{w}<0$. The equation

$$
\vec{v} \cdot \vec{w}=|\vec{v}||\vec{w}| \cos \theta=|\vec{v}|(|\vec{w}| \cos \theta)
$$

shows that the dot product of \vec{v} and \vec{w} can be interpreted as the length of \vec{v} times the scalar projection of \vec{w} onto \vec{v}. Since

$$
|\vec{w}| \cos \theta=\frac{\vec{v} \cdot \vec{w}}{|\vec{v}|}=\frac{\vec{v}}{|\vec{v}|} \cdot \vec{w}
$$

the component of \vec{w} along \vec{v} can be computed by taking the dot product of \vec{w} with the unit vector in the direction of \vec{v}. Therefore

$$
\begin{aligned}
\operatorname{comp}_{\vec{v}} \vec{w} & =\frac{\vec{v} \cdot \vec{w}}{|\vec{v}|} \\
\operatorname{proj}_{\vec{v}} \vec{w} & =\left(\frac{\vec{v} \cdot \vec{w}}{|\vec{v}|}\right) \frac{\vec{v}}{|\vec{v}|}=\frac{\vec{v} \cdot \vec{w}}{|\vec{v}|^{2}} \vec{v}
\end{aligned}
$$

Example 3. Find the angle between a diagonal of a cube and a diagonal of one of its faces.

