12.3 The Dot Product

There is a special way to "multiply" two vectors called the *dot product*. We define the dot product of $\vec{v} = \langle v_1, v_2, v_3 \rangle$ with $\vec{w} = \langle w_1, w_2, w_3 \rangle$ as

$$\vec{v} \cdot \vec{w} = \langle v_1, v_2, v_3 \rangle \cdot \langle w_1, w_2, w_3 \rangle = v_1 w_1 + v_2 w_2 + v_3 w_3$$

Note that the dot product of two vectors is a number, not a vector. Obviously $\vec{v} \cdot \vec{v} = |\vec{v}|^2$ for all vectors $\vec{v} \in \mathbb{R}^n$. In particular, $\vec{v} \cdot \vec{v} \geq 0$ for all vectors \vec{v} , with equality if and only if $\vec{v} = 0$. Furthermore, $\vec{v} \cdot \vec{w} = \vec{w} \cdot \vec{v}$. Other properties of the dot product are that for all vectors \vec{v} , \vec{w} , \vec{u} and for all scalars a, we have

$$(\vec{u} + \vec{v}) \cdot \vec{w} = \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w}$$
$$(a\vec{v}) \cdot \vec{w} = a(\vec{v} \cdot \vec{w})$$

Two vectors \vec{u}, \vec{v} are said to be **orthogonal** if $\vec{u} \cdot \vec{v} = 0$.

$$\vec{v} \perp \vec{w} \Leftrightarrow \vec{v} \cdot \vec{w} = 0.$$

Clearly $\vec{0}$ is orthogonal to every vector. Furthermore, $\vec{0}$ is the only vector that is orthogonal to itself. The next theorem is over 2,500 years old.

Theorem (Pythagorean Theorem). If \vec{u}, \vec{v} are orthogonal, then

$$|\vec{u} + \vec{v}|^2 = |\vec{u}|^2 + |\vec{v}|^2.$$

Proof. Suppose that \vec{u}, \vec{v} are orthogonal vectors. Then

$$\begin{aligned} |\vec{u} + \vec{v}|^2 &= (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) \\ &= |\vec{u}|^2 + |\vec{v}|^2 + \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{u} \\ &= |\vec{u}|^2 + |\vec{v}|^2, \end{aligned}$$

as desired.

Theorem. If θ is the angle between the vectors \vec{a} and \vec{b} , then

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta.$$

Proof. By the equivalence of the law of cosines and the dot product definition of $|\vec{a} - \vec{b}|^2$.

Corollary. If θ is the angle between the nonzero vectors \vec{a} and \vec{b} , then

$$\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}.$$

Example 1. Determine whether the following vectors are orthogonal, parallel, or neither:

- a) $\mathbf{u} = \langle -5, 4, -2 \rangle, \quad \mathbf{v} = \langle 3, 4, -1 \rangle$
- b) u = 9i 6j + 3k, v = -6i + 4j 2k
- c) $\mathbf{u} = \langle c, c, c \rangle$, $\mathbf{v} = \langle c, 0, -c \rangle$

Example 2. Find the values of x such that the angle between the vectors (2,1,-1) and (1,x,0) is 45° .

12.3.1 Direction Angles and Direction Cosines

The direction angles of a nonzero vector \vec{v} are the angles α, β , and γ , each between 0 and π , that the vector \vec{v} makes with the positive x-, y-, and z-axes, respectively. The cosines of these direction angles, $\cos \alpha, \cos \beta$, and $\cos \gamma$, are called the direction cosines of the vector \vec{v} . Using the previous corollary, we have

$$\cos \alpha = \frac{\vec{v} \cdot \hat{\imath}}{|\vec{v}||\hat{\imath}|} = \frac{v_1}{|\vec{v}|}$$

Similarly,

$$\cos \beta = \frac{v_2}{|\vec{v}|}$$
 and $\cos \gamma = \frac{v_3}{|\vec{v}|}$

Therefore

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$$

Furthermore,

$$\vec{v} = \langle v_1, v_2, v_3 \rangle = \langle |\vec{v}| \cos \alpha, |\vec{v}| \cos \beta, |\vec{v}| \cos \gamma \rangle = |\vec{v}| \langle \cos \alpha, \cos \beta, \cos \gamma \rangle$$

Therefore

$$\frac{\vec{v}}{|\vec{v}|} = \langle \cos \alpha, \cos \beta, \cos \gamma \rangle$$

That is, the direction cosines of \vec{v} are the components of the unit vector in the direction of \vec{v} .

12.3.2 Projections

The vector projection of \vec{w} onto \vec{v} , denoted by $\operatorname{proj}_{\vec{v}}\vec{w}$, is the shadow of \vec{w} on \vec{v} . The scalar projection of \vec{w} onto \vec{v} , also called the component of \vec{w} along \vec{v} , is defined to be the signed magnitude of the vector projection, which is the number $|\vec{w}|\cos\theta$, where θ is the angle between \vec{v} and \vec{w} . This is denoted by $\operatorname{comp}_{\vec{v}}\vec{w}$. When $\pi/2 < \theta \leq \pi$, we have $\operatorname{comp}_{\vec{v}}\vec{w} < 0$. The equation

$$\vec{v} \cdot \vec{w} = |\vec{v}| |\vec{w}| \cos \theta = |\vec{v}| (|\vec{w}| \cos \theta)$$

shows that the dot product of \vec{v} and \vec{w} can be interpreted as the length of \vec{v} times the scalar projection of \vec{w} onto \vec{v} . Since

$$|\vec{w}|\cos\theta = \frac{\vec{v}\cdot\vec{w}}{|\vec{v}|} = \frac{\vec{v}}{|\vec{v}|}\cdot\vec{w}$$

the component of \vec{w} along \vec{v} can be computed by taking the dot product of \vec{w} with the unit vector in the direction of \vec{v} . Therefore

$$\operatorname{comp}_{\vec{v}} \vec{w} = \frac{\vec{v} \cdot \vec{w}}{|\vec{v}|}$$
$$\operatorname{proj}_{\vec{v}} \vec{w} = \left(\frac{\vec{v} \cdot \vec{w}}{|\vec{v}|}\right) \frac{\vec{v}}{|\vec{v}|} = \frac{\vec{v} \cdot \vec{w}}{|\vec{v}|^2} \vec{v}$$

Example 3. Find the angle between a diagonal of a cube and a diagonal of one of its faces.