
12 Vectors and the Geometry of Space

12.1 Three-Dimensional Coordinate Systems

12.1.1 3D Space

The multivariable calculus that we study is mostly two or three variables. Two variables define a two-
dimensional plane, such as the Cartesian plane. With three variables, we have three dimensions. Let’s
consider the Cartesian 3D space, with the axes x, y, z. We call the two-dimensional space R2 and the three
dimensional space R3. Each point has a unique address in Cartesian space as (x, y, z), which is an ordered
triple.

By Pythagorean theorem: the distance |P1P2| between points P1(x1, y1, z1) and P2(x2, y2, z2) is derived
as follows:

|P1P2|2 = (x1 − x2)
2 + (y1 − y2)

2 + (z1 − z2)
2

So the equation of a sphere with center C(h, k, l) and radius r is

(x− h)2 + (y − k)2 + (z − l)2 = r2

In particular, the sphere with center at origin has the equation x2 + y2 + z2 = r2.

Example 1. Find an equation of the sphere that passes through the origin and whose center is (1, 2, 3).

Example 2. Describe in words the region of R3 represented by the equation y = −2.

Example 3. Describe in words the region of R3 represented by the inequality x2 + y2 + z2 ≤ 4.

12.2 Vectors

Let’s look at two important examples of a vector space.
The vector space R2, which you can think of as a plane, consists of all ordered pairs of real numbers:

R2 = {(x, y) : x, y ∈ R}.

The vector space R3, which you can think of as ordinary space, consists of all ordered triples of real numbers:

R3 = {(x, y, z) : x, y, z ∈ R}.

We may generalize R2 and R3 to higher dimensions as Rn. If n ≥ 4, we cannot easily visualize Rn as a
physical object. That would be the topic of a different course, namely linear algebra. So we only consider
R2 and R3.

A typical element of R2 is a point v = (x, y). Sometimes we think of v not as a point, but as an arrow
starting at the origin and ending at (x, y). When we think of v as an arrow, we refer to it as a vector and
write v⃗ = ⟨x, y⟩. x and y are called the components of v⃗.

Often you will gain better understanding by dispensing with the coordinate axes and just thinking of the
vector as an arrow.

Addition has a simple geometric interpretation. Suppose we have two vectors v⃗ and w⃗ in R2 that we
want to add. Move the vector w⃗ parallel to itself so that its initial point coincides with the end point of the
vector v⃗. The sum v⃗ + w⃗ then equals the vector whose initial point equals the initial point of v⃗ and whose
end point equals the end point of the moved vector w⃗.

Our treatment of the vector w⃗ above illustrates a standard philosophy when we think of vectors in R2 as
arrows: we can move an arrow parallel to itself (not changing its length or direction) and still think of it as
the same vector.

We define what it means to multiply an element of Rn by an element of R, such as

a⟨x, y, z⟩ = ⟨ax, ay, az⟩.
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This way we are scaling the vector. We say we have multiplied the vector v⃗ by the scalar a.
We define a vector space to be a set V along with addition and scalar multiplication on V . By addition

on V we mean a function that assigns an element u⃗+ v⃗ ∈ V to each pair of elements u⃗, v⃗ ∈ V . By a scalar
multiplication on V we mean a function that assigns an element av⃗ ∈ V to each a ∈ R and each v⃗ ∈ V .

Now we are ready to give a formal definition of a vector space. A vector space is a set V along with an
addition on V and a scalar multiplication on V such that the following properties hold:

commutativity
u⃗+ v⃗ = v⃗ + u⃗, ∀u⃗, v⃗ ∈ V

associativity

(u⃗+ v⃗) + w⃗ = u⃗+ (v⃗ + w⃗) and (ab)v⃗ = a(bv⃗), ∀u⃗, v⃗, w⃗ ∈ V and ∀a, b ∈ R

additive identity
∃ 0⃗ ∈ V : v⃗ + 0⃗ = v⃗, ∀v⃗ ∈ V

additive inverse
∀u⃗, v⃗ ∈ V, ∃ w⃗ ∈ V : v⃗ + w⃗ = 0⃗

multiplicative identity
1v⃗ = v⃗, ∀v⃗ ∈ V

distributive properties

a(u⃗+ v⃗) = au⃗+ av⃗ and (a+ b)v⃗ = av⃗ + bv⃗, ∀u⃗, v⃗ ∈ V and ∀a, b ∈ R

We define addition in Rn by adding corresponding coordinates:

⟨v1, v2, v3⟩+ ⟨w1, w2, w3⟩ = ⟨v1 + w1, v2 + w2, v3 + w3⟩

A vector is a mathematical object that has a length (magnitude) and a direction. We may depict a vector
with an arrow above the letter, such as v⃗. In books, sometimes they use bold typeface for vectors, such as v.

Proposition 1. A vector space has a unique additive identity.

Proof. Suppose 0⃗ and 0⃗′ are both additive identities. Then

0⃗′ = 0⃗′ + 0⃗ = 0⃗,

where the first equality holds because 0⃗ is an additive identity and the second equality holds because 0⃗′ is
an additive identity. Thus 0⃗′ = 0⃗, proving that the additive identity is unique.

Proposition 2. Every element in a vector space has a unique additive inverse.

Proof. Suppose w⃗ and w⃗′ are additive inverses of v⃗. Then

w⃗ = w⃗ + 0⃗ = w⃗ + (v⃗ + w⃗′) = (w⃗ + v⃗) + w⃗′ = 0⃗ + w⃗′ = w⃗′

Because additive inverses are unique, we can let −v⃗ denote the additive inverse of a vector v⃗. We define
w⃗ − v⃗ to mean w⃗ + (−v⃗).

Proposition 3. 0v⃗ = 0⃗ ∀v⃗.

Proof.
0v⃗ = (0 + 0)v⃗ = 0v⃗ + 0v⃗.

Adding the additive inverse of 0v⃗ to both sides of the equation above gives 0⃗ = 0v⃗, as desired.
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Proposition 4. a0⃗ = 0⃗ ∀a ∈ R.

Proof.
a0⃗ = a(⃗0 + 0⃗) = a0⃗ + a0⃗.

Adding the additive inverse of a0⃗ to both sides of the equation above gives 0⃗ = a0⃗, as desired.

Proposition 5. (−1)v⃗ = −v⃗ ∀v⃗ ∈ V .

Proof.
v⃗ + (−1)v⃗ = 1v⃗ + (−1)v⃗ = (1 + (−1))v⃗ = 0v⃗ = 0⃗.

This equation says that (−1)v⃗, when added to v⃗, gives 0⃗. Thus (−1)v⃗ must be the additive inverse of v⃗, as
desired.

By Pythagorean theorem,

|⟨x, y⟩| =
√
x2 + y2

and
|⟨x, y, z⟩| =

√
x2 + y2 + z2

We call a vector a unit vector if the length of the vector is one. The notation for the length of a vector v⃗ is
|v⃗|, that is, the same notation as an absolute value. So for unit vector u⃗, we have |u⃗| = 1. The unit vectors

along the the x, y, z axes are represented, respectively, as ı̂, ȷ̂, k̂. These are called standard basis vectors.

ı̂ = ⟨1, 0, 0⟩, ȷ̂ = ⟨0, 1, 0⟩, k̂ = ⟨0, 0, 1⟩

We have
⟨x, y, z⟩ = xı̂+ yȷ̂+ zk̂

and the unit vector in the same direction as v⃗ is

u⃗ =
1

|v⃗|
v⃗ =

v⃗

|v⃗|

Often working with vectors, when we write them in terms of basis vectors, helps with solving problems.

Example 4. Find the magnitude of the resultant force and the angle it makes with the positive x-axis between
a force of 20 lb with an angle of 45◦ and a force of 16 lb with an angle of −30◦.
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