10.3 Polar Coordinates

René Descartes introduced the Cartesian coordinate system. Newton invented another coordinate system, called *polar*. Sometimes the polar coordinate system is more efficient than the Cartesian system.

Much like the Cartesian that has an origin, the polar has a point called the *pole*. The ray from the pole extending to the right is called the *polar axis* and corresponds to the positive x-axis. We identify each point in the polar plane by the distance from the pole, r, and the angle θ from the polar axis to the line connecting the pole to the point. Thus the polar coordinate of each point is (r, θ) . As usual, the positive angles are going counterclockwise from the polar axis. The pole is at $(0, \theta)$ for any angle θ .

In this book, we extend the meaning of a negative number for the first coordinate as being on the opposite side of the pole when r > 0. So the points (r, θ) and $(-r, \theta)$ lie π radians apart:

$$(-r,\theta) = (r,\theta+\pi)$$

Note that in polar coordinate system each point may have more than one representation. For example, $(2, \pi/2)$ and $(2, -3\pi/2)$ are the same point.

$$(r,\theta) = (r, 2k\pi + \theta) = (-r, (2k+1)\pi + \theta), \quad k = 0, \pm 1, \pm 2, \dots$$

The conversion between the polar and Cartesian coordinates is via the following formulas:

$$x = r \cos \theta, \quad y = r \sin \theta$$

 $r^2 = x^2 + y^2, \quad \tan \theta = \frac{y}{r}$

Note that when we convert from Cartesian to polar, we must choose θ so that the point lies in the correct quadrant.

Example 1. Suppose $(x, y) = (\sqrt{3}, -1)$.

- a) Find polar coordinates (r, θ) of the point, where r > 0 and $0 \le \theta < 2\pi$.
- b) Find polar coordinates (r, θ) of the point, where r < 0 and $0 \le \theta < 2\pi$.

10.3.1 Polar Curves

The graph of a polar equation $F(r, \theta) = 0$ consists of all points (r, θ) that satisfy the equation.

Example 2. A circle with radius k, centered at the pole, has the equation r = k. The equation $\theta = m$ is a line passing through the pole.

Example 3. Sketch the curve with the polar equation $r = 1 + 2\cos\theta$ by first sketching the graph of r as a function of θ in Cartesian coordinates.

10.3.2 Symmetry

- If a polar equation does not change when we replace θ by $-\theta$, then the curve is symmetric about the polar axis.
- If a polar equation does not change when we replace r by -r, then the curve is symmetric about the pole.
- If a polar equation does not change when we replace θ by $\pi \theta$, then the curve is symmetric about the line $\theta = \pi/2$.

10.3.3 Tangents to Polar Curves

Thinking of θ as the parameter in $r = f(\theta)$, we have

$$x = r\cos\theta = f(\theta)\cos\theta, \quad y = r\sin\theta = f(\theta)\sin\theta$$

Thus

$$\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta}$$
$$= \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta}$$

When a tangent is horizontal, $\frac{dy}{dx} = 0$, that is, $\frac{dy}{d\theta} = 0$. Similarly, when a tangent is vertical, $\frac{dx}{d\theta} = 0$.

Example 4. Show that the curve $r = 2 - \csc \theta$ (a conchoid) has the line y = -1 as a horizontal asymptote by showing that $\lim_{r\to\pm\infty} y = -1$. Use this fact to help sketch the conchoid.

Example 5. Find the points on the curve $r = 1 - \sin \theta$ where the tangent line is horizontal or vertical.