1.4 Composition of Functions

Definition of Composition

Definition 1. The composition of functions f and g, denoted by $f \circ g$, is the function

$$
(f \circ g)(x)=f(g(x)) .
$$

Note: We first evaluate $g(x)$, then we evaluate $f(g(x))$.
Fact 1. The domain of $f \circ g$ is the set of numbers x in the domain of g, such that $g(x)$ is in the domain of f.

Example 1. Suppose $f(x)=\sqrt{x}, g(x)=\frac{x+1}{x+2}$, and $h(x)=|x-1|$. Evaluate the following.
a) $(g \circ f)(5)$.
b) $(f \circ h)(-15)$.
c) What is the domain of $g \circ f$?
d) What is the domain of $f \circ h$?

Order Matters in Composition

Example 2. Suppose that $f\left(x=x^{2}+1\right.$ and $g(x)=\frac{1}{x}$.
a) Find $f \circ g$.
b) Find $g \circ f$.

As the above example demonstrates, in general, $f \circ g \neq g \circ f$.

The Identity Function

Consider the following function:

$$
I(x)=x .
$$

Then

$$
I \circ f=f \circ I=f
$$

for every function f. We say I is the identity for the operation of composition.

Decomposing Functions

It is usually difficult to start with a function and write it as the composition of two simpler functions.
Example 3. Suppose

$$
h(x)=\sqrt{\frac{1}{x^{2}+1}+2} .
$$

a) If $f(x)=\sqrt{x}$, then find a function g such that $h=f \circ g$.
b) If $f(x)=\sqrt{x+2}$, then find a function g such that $h=f \circ g$.

