1.4 Composition of Functions

Definition of Composition

Definition 1. The composition of functions f and g, denoted by $f \circ g$, is the function

$$(f \circ g)(x) = f(g(x)).$$

Note: We first evaluate g(x), then we evaluate f(g(x)).

Fact 1. The domain of $f \circ g$ is the set of numbers x in the domain of g, such that g(x) is in the domain of f.

Example 1. Suppose $f(x) = \sqrt{x}$, $g(x) = \frac{x+1}{x+2}$, and h(x) = |x-1|. Evaluate the following.

- a) $(g \circ f)(5)$.
- b) $(f \circ h)(-15)$.
- c) What is the domain of $g \circ f$?
- d) What is the domain of $f \circ h$?

Order Matters in Composition

Example 2. Suppose that $f(x = x^2 + 1 \text{ and } g(x) = \frac{1}{x}$.

- a) Find $f \circ g$.
- b) Find $g \circ f$.

As the above example demonstrates, in general, $f \circ g \neq g \circ f$.

The Identity Function

Consider the following function:

I(x) = x.

Then

$$I \circ f = f \circ I = f$$

for every function f. We say I is the identity for the operation of composition.

Decomposing Functions

It is usually difficult to start with a function and write it as the composition of two simpler functions.

Example 3. Suppose

$$h(x) = \sqrt{\frac{1}{x^2 + 1} + 2}.$$

- a) If $f(x) = \sqrt{x}$, then find a function g such that $h = f \circ g$.
- b) If $f(x) = \sqrt{x+2}$, then find a function g such that $h = f \circ g$.