7.5 The Area Between Two Curves

If f and g are continuous functions and $f(x) \ge g(x)$ on [a, b], then the area between the curves f(x) and g(x) from x = a to x = b is

$$\int_{a}^{b} [f(x) - g(x)] \, dx$$

7.5.1 Consumers' Surplus

Suppose you enter a store to buy an item for \$10. However, you discover that the item is actually selling for \$7. The amount that you saved (\$3), plus all the amount that other people save by buying at a lower amount that they were willing to pay, is called the consumer surplus.

Graphically, the consumer surplus is the area under the demand curve that is above the equilibrium:

consumers' surplus =
$$\int_0^{q_0} [D(q) - p_0] dq$$
,

where p = D(q) is the demand function, and (q_0, p_0) is the equilibrium point.

Similarly, if manufacturers would be willing to supply a product at a price *lower* than the equilibrium price p_0 , manufacturers would get added income, which is called the producers' surplus: the total of the differences between the equilibrium price and the lower prices at which the manufacturers would sell the product.

producers' surplus =
$$\int_0^{q_0} [p_0 - S(q)] dq$$
,

where (q_0, p_0) is the equilibrium point and p = S(q) is the supply function.

The total surplus is the sum of consumers' surplus and producers' surplus.

Example 1. A factory has installed a new process that will produce an increased rate of revenue (in thousands of dollars per year) of

$$R'(t) = 104 - 0.4e^{t/2},$$

where t is time measured in years. The new process produces additional costs (in thousands of dollars per year) at the rate of

$$C'(t) = 0.3e^{t/2}.$$

a) When will it no longer be profitable to use this new process?

b) Find the net total savings.

Example 2. Suppose the supply function for concrete is given (in dollars) by

$$S(q) = 100 + eq^{3/2} + q^{5/2}$$

and that supply and demand are in equilibrium at q = 9. Find the producers' surplus.

Example 3. Find the consumers' surplus if the demand function for extra virgin olive oil is given (in dollars) by

$$D(q) = \frac{32000}{(2q+8)^3},$$

and if supply and demand are in equilibrium at q = 6.

Example 4. For a family with an income in the lowest fifth of the U.S. population, the mean household income for the years 1970 to 2012 can be approximated (in thousands of dollars) by

$$f(t) = -0.0001844t^3 + 0.009938t^2 - 0.08515t + 11.33t^3$$

where t is the number of years since 1970. The mean household income for a family in the top 5% can be approximated by

$$g(t) = -0.01107t^3 + 0.6854t^2 - 6.587t + 193.3.$$

- a) Find the area under f(t) and g(t), as well as the area between the two curves, over the interval $0 \le t \le 42$.
- b) Interpret the answers from part (a) and discuss what they might tell us about income inequality.

Homework

§7.5: 27, 31, 33, 37, 41