6 Cyclic Groups

Review: If $G = \{b^n \mid n \in \mathbb{Z}\}$ then the element b is a **generator** of G, the group $G = \langle b \rangle$ is **cyclic**, and we say G is **generated** by b.

If $\langle b \rangle$ is finite, then the **order** of b is the order $|\langle b \rangle|$ of this cyclic group. Otherwise, b is of **infinite order**.

6.1 Elementary Properties of Cyclic Groups

Theorem. Every cyclic group is abelian.

Theorem (Division Algorithm for \mathbb{Z}). If $m \in \mathbb{Z}^+$, $n \in \mathbb{Z}$, then there exist unique integers q, r such that

$$n = mq + r$$
, $0 \le r \le m$.

In the division algorithm, q is called the quotient and r is the remainder.

Theorem. A subgroup of a cyclic group is cyclic.

Corollary. The subgroups of \mathbb{Z} under addition are precisely the groups $n\mathbb{Z}$ under addition for $n \in \mathbb{Z}$.

Definition 1. Let $r, s \in \mathbb{Z}^+$. The positive generator d of the cyclic group

$$H = \{ nr + ms \mid n, m \in \mathbb{Z} \}$$

under addition is the **greatest commond divisor** (abbreviated gcd) of r and s. We write $d = \gcd(r, s)$.

Relatively prime integers have gcd= 1, that is, they have no common prime factors.

Remark. If r, s are relatively prime and $r \mid sm$, then $r \mid m$. (The vertical line is notation for "divides")

6.2 The Structure of Cyclic Groups

Theorem. Let $G = \langle b \rangle$ be a cyclic group. If the order of G is infinite, then G is isomorphic to $\langle \mathbb{Z}, + \rangle$. If G has finite order, then G is isomorphic to $\langle \mathbb{Z}_n, + \rangle$.

6.3 Subgroups of Finite Cyclic Groups

Theorem. Let $G = \langle a \rangle$ be a cyclic group with |G| = n. Let $b = a^s$ for some integer s. Then $H = \langle b \rangle \leq G$ is a cyclic subgroup of G with $|H| = n/\gcd(n, s)$. Also,

$$\langle a^s \rangle = \langle a^t \rangle \iff \gcd(n, s) = \gcd(n, t)$$

Corollary. If b is a generator of a finite cyclic group G of order n, then the other generators of G are the elements of the form b^r , where r is relatively prime to n.

Example 1. An isomorphism of a group with itself is an **automorphism** of the group. Find the number of automorphisms of \mathbb{Z}_8 .

Example 2. Find the number of elements in the cyclic subgroup of the group \mathbb{C}^* of nonzero complex numbers under multiplication, generated by $(1+i)/\sqrt{2}$.

Example 3. Find all orders of subgroups of \mathbb{Z}_8 .

Example 4. Either give an example of an infinite cyclic group having four generators, or explain why no such group exists.

Example 5. Let G be a group and suppose $a \in G$ generates a cyclic subgroup of order 2 and is the unique such element. Show that ax = xa for all $x \in G$. [Hint: Consider $(xax^{-1})^2$.]