
5 Subgroups

5.1 Notation and Terminology

By convention, the binary operation + is considered commutative, whereas multiplication, such as ab may
or may not be commutative. We may continue to use 0 as the identity of + and 1 as the identity element of
multiplication. We use −a to denote the additive inverse of an element a, and a−1 to denote the multiplicative
inverse of a.

We use the usual convention that the product of n factors of a is an and the sum of n elements a is na.
Similarly, (a−1)n = a−n and n(−a) = −na.

Remark. In both na and an, a ∈ G and n ∈ Z. In particular, n /∈ G.

Remark. We use the multiplication to denote a general binary operation.

We define the order of a group G, denoted by |G|, as the number of elements in G (compare to the
cardinality of a set).

5.2 Subsets and Subgroups

Definition 1. If a subset H of a group G is closed under the binary operation of G and if H with the induced
operation from G is itself a group, then H is a subgroup of G, denoted by H ≤ G or G ≥ H. If H ̸= G, we
write H < G or G > H.

Thus ⟨Z,+⟩ < ⟨R,+⟩ and ⟨Q+, ·⟩ is not a subgroup of ⟨R,+⟩ (why?), even though Q+ ⊂ R.

Definition 2. If G is a group, then G is the only improper subgroup of G and all other subgroups of G are
proper subgroups. The subgroup {e} is the trivial subgroup of G and all other subgroups are nontrivial.

Example 1. There are two different groups of order 4: ⟨Z4,+⟩, which is isomorphic to the fourth roots of
unity under multiplication ⟨U4, ·⟩, where U4 = {1, i,−1,−i}:

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

and the Klein 4-group, denoted by V (from German “vier” for “four”):

∗ e a b c
e e a b c
a a e c b
b b c e a
c c b a e

The only nontrivial proper subgroup of Z4 is {0, 2}. The Klein 4-group has three nontrivial proper subgroups:
{e, a}, {e, b}, {e, c}.

A subgroup diagram shows the subgroups under their parent groups.

Theorem. Suppose ⟨G, ·⟩ is a group and H ⊆ G. ⟨H, ·⟩ is a subgroup of G if and only if

1. H is closed under ∗

2. the identity element e ∈ G is also the identity element in H

3. for all a ∈ H, a−1 ∈ H.

An argument for the proof follows the fact that every equation in H is also an equation in G.
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5.3 Cyclic Subgroups

Definition 3. Let G be a group and a ∈ G. The cyclic subgroup of G generated by a is

⟨a⟩ = {an | n ∈ Z}.

Theorem. Let G be a group and let a ∈ G. Then ⟨a⟩ is a subgroup of G and is the smallest subgroup of G
that contains a. That is, every subgroup of G that contains a, contains ⟨a⟩.

Definition 4. If G = ⟨a⟩ for some a ∈ G, then the element a generates G and is a generator for G. If an
element generates a group G, we say G is cyclic.

Example 2. We have ⟨1⟩ = Z4 = ⟨3⟩. However, the Klein 4-group is not cyclic, because ⟨a⟩, ⟨b⟩, ⟨c⟩ are
proper subgroups of V .

Example 3. If n > 1, then Zn = ⟨1⟩ = ⟨n− 1⟩.

Example 4. We have ⟨3⟩ = 3Z and 6Z < 3Z.

Example 5. Determine whether the set of n × n invertible matrices with determinant 2 is a subgroup of
GL(n,R).

Example 6. Describe all the elements in the cyclic subgroup of GL(2,R) generated by

[
3 0
0 2

]
.
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