2 Binary Operations

A binary operation * on a set S is a function that maps $S \times S$ into S. If $(a, b) \in S$, then $*((a, b)) \in S$, which is equivalent to a * b.

Familiar examples of binary operations are addition and multiplication.

If $H \subseteq S$, we say H is closed under * if for all $a, b \in H$, we also have $(a * b) \in H$. Note that S is closed under * by definition of a binary operation.

A binary operation * is said to be **commutative** if a * b = b * a for all $a, b \in S$.

If for all $a, b, c \in S$, a * (b * c) = (a * b) * c, we say * is associative on S.

Theorem (Associativity of Composition). Let S be a set and let f, g, h be functions that map S into S. Then $f \circ (g \circ h) = (f \circ g) \circ h$.

For a binary operation * on a set S to be valid, we need

- 1. * to be well defined, and
- 2. S to be closed under *.

Example 1. On \mathbb{Z}^+ , division (/) is not a binary operation because \mathbb{Z}^+ is not closed under division.

2.1 Tables

We may define a binary operation on a finite set via a table, such that we list the elements of the set across the top and in the same order along the side.

Example 2. Complete the following table such that * is associative on $S = \{a, b, c, d\}$.

*	a	b	c	d
a	a	b	c	d
b	b	a	c	d
c	c	d	c	d
d				

Example 3. Determine whether the binary operation * defined on \mathbb{Q} by letting a * b = ab + 1 is commutative and whether * is associative.

3 Isomorphic Binary Structures

A binary algebraic structure $\langle S, * \rangle$ is a set S together with a binary operation * on S. Consider binary algebraic structures $\langle S, * \rangle$ and $\langle S', *' \rangle$. We say an **isomorphism** of S with S' is a 1-1 function ϕ mapping S onto S' such that the homomorphism property holds:

$$\forall x, y \in S : \phi(x * y) = \phi(x) *' \phi(y)$$

To show binary structures $\langle S, * \rangle$ and $\langle S', *' \rangle$ are isomorphic:

- 1. Define the isomorphism function ϕ
- 2. Show that ϕ is 1-1: $\phi(x) = \phi(y) \Rightarrow x = y$
- 3. Show that ϕ is onto S': $\forall s' \in S', \exists s \in S \text{ such that } \phi(s) = s'$
- 4. Show that ϕ has the homomorphism property: $\forall x, y \in S, \phi(x * y) = \phi(x) *' \phi(y)$

To show two binary structures are not isomorphic we may show that they have different structural properties. A **structural property** of a binary structure is a property that isomorphic structures share. For example, having an identity element is a structural property, whereas name of an element is not.

Suppose $\langle S, * \rangle$ is a binary structure. An element $e \in S$ is called an **identity element for** * if for all $x \in S$, e * x = x * e = x.

Theorem (Uniqueness of Identity Element). A binary structure $\langle S, * \rangle$ has at most one identity element.

Proof. Suppose e and e' are two identity elements of S. Then

$$e = e * e' = e'$$

where the first equality holds because e' is an identity element and the second equation holds because e is an identity element.

Theorem. Suppose $\langle S, * \rangle$ has an identity element e for *. If $\phi : S \to S'$ is an isomorphism of $\langle S, * \rangle$ with $\langle S', *' \rangle$, then $\phi(e)$ is an identity element of $\langle S', *' \rangle$.

Example 4. Determine whether $\phi(x) = x^2$ is an isomorphism of $\langle \mathbb{Q}, \cdot \rangle$ with $\langle \mathbb{Q}, \cdot \rangle$.

Example 5. Determine whether $\phi(r) = 0.5^r$ is an isomorphism of $\langle \mathbb{R}, + \rangle$ with $\langle \mathbb{R}^+, \cdot \rangle$, where $r \in \mathbb{R}$.

Example 6. Let F be the set of all functions $f : \mathbb{R} \to \mathbb{R}$ that have derivatives of all orders. Determine whether $\phi(f)(x) = \frac{d}{dx} \left[\int_0^x f(t) dt \right]$ is an isomorphism of $\langle F, + \rangle$ with $\langle F, + \rangle$.

Example 7. The map $\phi : \mathbb{Z} \to \mathbb{Z}$ defined by $\phi(n) = n + 1$ for $n \in \mathbb{Z}$ is 1-1 and onto \mathbb{Z} . Give the definition of a binary operation * on \mathbb{Z} such that ϕ is an isomorphism mapping

a) $\langle \mathbb{Z}, + \rangle$ onto $\langle \mathbb{Z}, * \rangle$

b) $\langle \mathbb{Z}, * \rangle$ onto $\langle \mathbb{Z}, + \rangle$

In each case, give the identity element for * on \mathbb{Z} .

Example 8. Prove that if $\phi : S \to S'$ is an isomorphism of $\langle S, * \rangle$ with $\langle S', *' \rangle$, then ϕ^{-1} is an isomorphism of $\langle S', *' \rangle$ with $\langle S, * \rangle$.