
11 Direct Products and Finitely Generated Abelian Groups

A review of the groups we have seen so far:

Zn = cyclic group of addition modulo n

Sn = symmetric group of permutations

An ≤ Sn = alternating group consisting of all even permutations of n letters

Dn = dihedral group of symmetries of the regular n-gon

V = Klein-4 group

U = complex numbers of magnitude 1 (on unit circle) under multiplication

Definition. The Cartesian product of sets S1, S2, . . . , Sn is the set of all ordered n-tuples (a1, a2, . . . , an),
where ai ∈ Si for i = 1, 2, . . . , n. We denote such Cartesian product as

n∏
i=1

Si = S1 × S2 × · · · × Sn.

Theorem. Let G1, G2, . . . , Gn be groups. For (a1, a2, . . . , an) ∈
∏n

i=1 Gi and (b1, b2, . . . , bn) ∈
∏n

i=1 Gi,
define

(a1, a2, . . . , an)(b1, b2, . . . , bn) = (a1b1, a2b2, . . . , anbn).

Then
∏n

i=1 Gi is a group, the direct product of the groups Gi, under this binary operation.

Remark. If the operation of each Gi is commutative, we define direct sum of the groups Gi with addition
as the binary operation:

(a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . , an + bn)

and
n⊕

i=1

Gi = G1 ⊕G2 · · · ⊕Gn.

If each Si has ni elements, then how many elements would
∏n

i=1 Si have?

Example 1. We have ⟨(1, 1)⟩ = Z3 × Z2:

1(1, 1) = (1, 1)

2(1, 1) = (1, 1) + (1, 1) = (2, 0)

3(1, 1) = (2, 0) + (1, 1) = (0, 1)

4(1, 1) = (0, 1) + (1, 1) = (1, 0)

5(1, 1) = (1, 0) + (1, 1) = (2, 1)

6(1, 1) = (2, 1) + (1, 1) = (0, 0)

Since there is only one cyclic group of a given order (up to isomorphism), we have Z3 ⊕ Z2
∼= Z6.

Example 2. The group Z2 × Z2 is not cyclic, because the maximum order of every element is 2 and there
is no element of order 4 to generate the entire group. Therefore Z2 × Z2

∼= V .

Theorem.
Zm × Zn

∼= Zmn ⇐⇒ gcd(m,n) = 1.

Corollary.
n∏

i=1

Zmi
∼= Zm1m2···mn ⇐⇒ gcd(mi,mj) = 1, i ̸= j
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Example 3.
Z120

∼= Z8 × Z3 × Z5

Remark.
G1 ×G2

∼= G2 ×G1

Remark. Let H be the set of all common multiples of positive integers ri, i = 1, 2, . . . , n. Then H ≤ Z and
hence H is cyclic.

Definition. Let r1, r2, . . . , rn ∈ Z+. Their least common multiple (denoted by lcm) is the positive
generator of the cyclic group of all common multiples of the ri, that is, the cyclic group of all integers
divisible by each ri for i = 1, 2, . . . , n.

Theorem. Let (a1, a2, . . . , an) ∈
∏n

i=1 Gi. If ai is of finite order ri in Gi, then the order of (a1, a2, . . . , an)
in

∏n
i=1 Gi is equal to lcm(r1, r2, . . . , rn).

Example 4. Find the order of (3, 6, 12, 16) in Z4 ⊕ Z12 ⊕ Z20 ⊕ Z24.

Remark. Let
Ḡi = {(e1, e2, . . . , ei−1, ai, ei+1, . . . , en) | ai ∈ Gi},

that is, the set of all n-tuples with the identity elements in all places except the ith place. Then Ḡi ≤
∏n

i=1 Gi.
Furthermore, Ḡi

∼= Gi because (e1, e2, . . . , ei−1, ai, ei+1, . . . , en) corresponds to ai.
We say

∏n
i=1 Gi is the internal direct product of the subgroups Ḡi and the usual direct product is called

the external direct product of the groups Gi. So, internal refers to subgroups and external to groups.

11.0.1 The Structure of Finitely Generated Abelian Groups

Theorem (Fundamental Theorem of Finitely Generated Abelian Groups). Every finitely generated abelian
group G is isomorphic to a direct product of cyclic groups in the form

Z(p1)r1 × Z(p2)r2 × · · · × Z(pn)rn × Z× Z× · · · × Z

where the pi are primes, not necessarily distinct, and the ri are positive integers.
The direct product is unique except for possible rearrangement of the factors. That is, the number (Betti

number of G) of factors Z is unique and the prime powers (pi)
ri are unique.

Example 5. Find all abelian groups, up to isomorphism, of order

a) 16

b) 720

c) 104

11.0.2 Applications

Definition. A group G is decomposable if it is isomorphic to a direct product of two proper nontirival
subgroups. Otherwise G is indecomposable.

Theorem. The finite indecomposable abelian groups are exactly the cyclic groups with order a power of a
prime.

Theorem. If m divides the order of a finite abelian group G, then G has a subgroup of order m.

Theorem. If m is a square free integer, that is, m is not divisible by the square of any prime, then every
abelian group of order m is cyclic.
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