
10 Cosets and Lagrange’s Theorem

10.1 Cosets

Theorem. Suppose H ≤ G. Define the relation ∼L as

a ∼L b ⇐⇒ a−1b ∈ H.

Similarly,
a ∼R b ⇐⇒ ab−1 ∈ H.

Then both ∼L and ∼R are equivalence relations on the group G.

We may prove the theorem by showing that ∼L is reflexive, symmetric, and transitive. Similar procedure
proves the theorem for ∼R.

Recall that every equivalence relation on a set S partitions S into equivalence classes. For the equivalence
relation ∼L, what is the equivalence class for an element g ∈ G?

If x ∈ G is in the same class as g, then g ∼L x, which means g−1x ∈ H. That is, g−1x = h for some
h ∈ H. If we solve this equation for x, we obtain x = gh. Thus the equivalent class of g ∈ G is {gh | h ∈ H}.
We use the notation gH for this equivalence class.

Similarly, the equivalent class of g ∈ G for the equivalence relation ∼R is Hg = {hg | h ∈ H}.

Definition. Suppose H ≤ G. The left coset of H containing g ∈ G is gH ⊆ G. The right coset of H
containing g ∈ G is Hg ⊆ G.

Example 1. Find all cosets of the subgroup 4Z of 2Z.

Remark. If H ≤ G and G is abelian, then gH = Hg for all g ∈ G.

Remark. The equivalence classes of ∼L and ∼R in nZ for an integer n are called cosets modulo nZ.

Example 2. Find the partitions of Z6 into cosets of the subgroup H = ⟨3⟩.

Solution. The cosets are 0 + ⟨3⟩, 1 + ⟨3⟩, 2 + ⟨3⟩.
If we use the notation:

0 =
0 3
3 0

1 =
1 4
4 1

2 =
2 5
5 2

then we may rewrite the table for Z6 as the following:

0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

We observe that this coset group is isomorphic to Z3. Section 14 of the textbook shows that a partition of
an abelian group into cosets always results in a coset group.
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Example 3. S3 is nonabelian and we do not get a coset group from the left cosets and right cosets of
⟨µ1⟩ = {ρ0, µ1}.

S3 ρ0 ρ1 ρ2 µ1 µ2 µ3

ρ0 ρ0 ρ1 ρ2 µ1 µ2 µ3

ρ1 ρ1 ρ2 ρ0 µ3 µ1 µ2

ρ2 ρ2 ρ0 ρ1 µ2 µ3 µ1

µ1 µ1 µ2 µ3 ρ0 ρ1 ρ2
µ2 µ2 µ3 µ1 ρ2 ρ0 ρ1
µ3 µ3 µ1 µ2 ρ1 ρ2 ρ0

The left cosets of H = ⟨µ1⟩ are

H = {ρ0, µ1}
ρ1H = {ρ1ρ0, ρ1µ1} = {ρ1, µ3}
ρ2H = {ρ2ρ0, ρ2µ1} = {ρ2, µ2}.

The partition of S3 into right cosets of H is

H = {ρ0, µ1}
Hρ1 = {ρ0ρ1, µ1ρ1} = {ρ1, µ2}
Hρ2 = {ρ0ρ2, µ1ρ2} = {ρ2, µ3}.

Remark. For the nonabelian group S3, the left cosets of ⟨ρ1⟩ = {ρ0, ρ1, ρ2} and the right cosets of ⟨ρ1⟩ are
the same:

H = {ρ0, ρ1, ρ2}
µ1H = {µ1, µ2, µ3} = Hµ1

These cosets do form a coset group that is isomorphic to Z2. The reason is that the partition of S3 into left
cosets is the same as the partition of S3 into right cosets. Thus we may simply say the cosets of H and omit
the the adjective left or right.
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10.2 Lagrange’s Theorem

Theorem (Lagrange’s Theorem). If G is a finite group and H ≤ G, then |H| divides |G| and the number

of left cosets of H in G equals |G|
|H| .

Proof. Let |H| = n and let the number of left cosets of H in G equal k. The set of left cosets of H in G
partition G. By definition of a left coset, the map

H → gH defined by h 7→ gh

maps H onto the left coset gH. The left cancellation law implies this map is 1-1 because gh1 = gh2 implies
h1 = h2. This proves that H and gH have the same order.

|gH| = |H| = n.

Since G is partitioned into k disjoint subsets each of which has cardinality n, |G| = nk. Thus k = |G|
n =

|G|
|H| .

The proof of Lagrange’s Theorem is the result of simple counting! Lagrange’s Theorem is one of the most
important combinatorial results in finite group theory and will be used repeatedly.

Corollary. If G is a group of prime order p, then G is cyclic and G ∼= Zp.

Proof. Let x ∈ G and x ̸= 1. Thus |⟨x⟩| > 1 and |⟨x⟩| divides G. Since |G| is prime, we must have |⟨x⟩| = |G|.
Therefore G = ⟨x⟩ is cyclic (with any non-identity element x as generator). Since every two cyclic groups of
the same order are isomorphic, G ∼= Zp.

Thus there is only one group structure, up to isomorphism, of a given prime order p.

Corollary. If G is a finite group and x ∈ G, then the order of x divides the order of G. In particular,
x|G| = 1 for all x in G.

Proof. We have |x| = |⟨x⟩|. The first part of the corollary follows from Lagrange’s Theorem applied to
H = ⟨x⟩. The second statement is clear since now |G| is a multiple of the order of x.

Definition. If G is a group and H ≤ G, the number of left cosets of H in G is called the index of H in G
and is denoted by (G : H).

If G is finite, then (G : H) = |G|/|H| because every coset of H contains |H| elements.

Theorem. Suppose G is a group and K ≤ H ≤ G. Furthermore, suppose (H : K) and (G : H) are both
finite. Then (G : K) is finite and (G : K) = (G : H)(H : K).

Example 4. Find the index of ⟨µ2⟩ in the group D4.

Example 5. Let σ = (1, 2, 5, 4)(2, 3) in S5. Find the index of ⟨σ⟩ in S5.

Example 6. Let H be a subgroup of a group G and let a, b ∈ G. Prove

aH = bH =⇒ Ha−1 = Hb−1

or give a counterexample.

Example 7. Show that if a group G with identity element e has finite order n, then gn = e for all g ∈ G.
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