DO NOT TURN OVER UNTIL INSTRUCTED TO DO SO.

NO CALCULATORS PERMITTED.

EXAM TIME IS 50 MINUTES.

THE EXAM CONSISTS OF 5 QUESTIONS.

\mathbf{Y} our	name:						
Your	SID:	_					

Question 1	/ 20
Question 2	/ 20
Question 3	/ 20
Question 4	/ 20
Question 5	/ 20
Total	/ 100

1. Solve the following inequality. Express your answer as an interval.

$$\frac{x-1}{x+1} > 0$$

	X <-	-1 < × < 1	(< ×
×-1	-	—	+
X+I	_	+	+
×-' ×+1	+		1

$$\Rightarrow \begin{array}{c} \times = 1 \\ \times + 1 \end{array} > 0 \quad \begin{cases} 6r \\ \times \in (-\infty, -1) \cup (1, \infty) \end{cases}$$

2. Give an example of two functions $f, g: X \to X$, where X is a set you may choose, such that

$$f \circ g \neq g \circ f \tag{1}$$

Take
$$f: \mathbb{R} \rightarrow \mathbb{R}, \quad f(x) = 2x$$

$$g: \mathbb{R} \rightarrow \mathbb{R}, \quad g(x) = x+1$$

$$= (f \circ g)(x) = f(g(x)) = 2(x+1) = 2x+2$$

$$(g \circ f)(x) = g(f(x)) = 2x+1$$

- 3. (a) If a line L has slope $m \neq 0$, what is the slope of a line L'
 - i. perpendicular to L
 - ii. parallel to L
 - (b) Sketch the line L: y = 2x + 1 and point P: (2,0)
 - (c) Write down the equation for the line L' perpendicular to L passing through P
 - (d) Find the coordinates of the point of intersection of L with L'
- (i) has slope /m (ii) has slope m
- (6)
- (0)
 - $y 0 = -\frac{1}{2}(x 2)$ $y = -\frac{1}{2}x + 1$
- Need to find (xy) St y=2x+1
 y=-1/2x+1
 - $(+2x = -\frac{1}{2}x + 1)$

 - > X=0 > /= 1 = intersection point at (0,1). TURN OVER

- 4. Let f(x) = |x+1| |x-1|
 - (a) Plot the graph of f(x)
 - (b) Is f(x) a one-to-one function? Justify your answer.
 - (c) Is f(x) an even or odd function? Justify your answer.
 - (d) Plot the graph of $\frac{1}{2}f(x+2)+2$ using simple transformations of f(x)

(a)
$$f(x) = \begin{cases} -(x+1) - (-(x-1)) & \text{for } x < -1 \\ (x+1) - (-(x-1)) & \text{for } -1 \le x < 1 \\ (x+1) - (x-1) & \text{for } 1 \le x \end{cases}$$

$$= \begin{cases} -2 & \text{for } x < -1 \\ 2x & \text{for } -1 \le x < 1 \\ 2x & \text{for } -1 \le x < 1 \end{cases}$$
Plot:

Plot:

(b): No! Down't page borroated be text.

(c) odd furtial: f(-x) = |-x+1| - |-x-1|= |x-1| - |x+1|= -f(x).

 $(d) \quad f(x) \stackrel{\text{left-slift}}{\rightarrow} f(x+2) \stackrel{\text{schzel}}{\rightarrow} \frac{1}{2} f(x+2) \stackrel{\text{schzel}}{\rightarrow} \frac{1}{2} f(x+2) + 1$

TURN OVER

- 5. (a) Complete the square of $x^2 + 2(a-1)x + a^2$ and find the coordinates of the vertex of the parabola, when $x^2 + 2(a-1)x + a^2$ is viewed as a function in x
 - (b) By (a) or another method find all real numbers a such that the quadratic equation $x^2 + 2(a-1)x + a^2 = 0$ in x has
 - i. No solution in x
 - ii. One solution in x
 - iii. Two solutions in x
- (a) Complete the square $x^2 + 2(a-1)x + (a-1)^2 (a-1)^2 + a^2$ = $(x + a-1)^2 - a^2 + 2a - 1 + a^2$ = $(x + a-1)^2 + (2a-1)$ =) Netex (1-a, 2a-1)
- (b) Vertex close X-axis \Rightarrow no solution: So 2a-1>0, $a>t_2$ no solution: So 2a-1=0, $a=t_2$ one solution: Vertex on X-axis \Rightarrow one solution: So 2a-1=0, $a=t_2$ one solution: Vertex below $x-axis \Rightarrow hoo solutions So <math>2a-1<0$, $a<t_2$, hoo solutions

Alternatively Look at determinant: $4(a-1)^2 - 4a^2 = 4(a^2-2a+1-a^2)$ = 4(1-2a)