DO NOT TURN OVER UNTIL INSTRUCTED TO DO SO.

NO CALCULATORS PERMITTED.

EXAM TIME IS 170 MINUTES.

THE EXAM CONSISTS OF 10 QUESTIONS.

Your name: \qquad
Your SID: \qquad
Your Section and GSI: \qquad

Question 1	$/ 20$
Question 2	$/ 20$
Question 3	$/ 20$
Question 4	$/ 20$
Question 5	$/ 20$
Question 6	$/ 20$
Question 7	$/ 20$
Question 8	$/ 20$
Question 9	$/ 20$
Question 10	$/ 20$
Total	

1. Evaluate the following expressions
(a) $\sin \left(135^{\circ}\right)$
(b) $\cos \left(\frac{5 \pi}{3}\right)$
(c) $\cot \left(\frac{\pi}{4}\right)$
(d) $\sin ^{-1}\left(\sin \left(\frac{7 \pi}{8}\right)\right)$
(e) $\cos \left(\tan ^{-1}\left(\frac{1}{3}\right)\right)$
2. (a) Derive the double-angle formula for cosine from the addition theorems.
(b) Use (a) to derive the half-angle formulae for sine and cosine.
(c) Compute $\sin \left(\frac{45^{\circ}}{2}\right)$.
3. Let A, B, C be the angles of a triangle and a, b, c the lengths of the opposite sides respectively.
(a) Write down the law of sines and explain how to derive it.
(b) Assuming $a=5, A=\frac{\pi}{6}$ and $B=\frac{\pi}{8}$ find the other angles and sidelengths of the triangle. (Note: You may use your result from Question 2)
4. (a) Let $f(x)=\frac{e^{x}-e^{-x}}{2}$. Sketch the graph of $f(x)$.
(b) Use the graph to explain why $f(x)$ is invertible.
(c) Is $f(x)$ an even or odd function?
(d) Find the inverse of $f(x)$.
5. (a) Sketch the graphs of $\sin (x), \cos (x)$ and $\tan (x)$.
(b) How many zeros does $\sin (x)$ have in the interval $\left(\pi, \frac{27 \pi}{2}\right]$?
(c) Find the amplitude and the period of the function $f(x)=\frac{1}{2}+\frac{1}{2} \sin \left(\frac{\pi}{2} x-\pi\right)$.
(d) Sketch the function $f(x)$.
(a) Show that $\tan ^{2}(\theta)+1=\sec ^{2}(\theta)$
(b) Show using the addition theorem for sine and cosine that

$$
\tan \left(\theta_{1}+\theta_{2}\right)=\frac{\tan \left(\theta_{1}\right)+\tan \left(\theta_{2}\right)}{1-\tan \left(\theta_{1}\right) \tan \left(\theta_{2}\right)}
$$

(c) Use b) to find an expression for $\tan \left(\theta_{1}-\theta_{2}\right)$.
6. (a) Write down the equation for a circle K with centre $C:(2,3)$ and radius 2 .
(b) Write down the equation of the line l that passes through C and has gradient $-\sqrt{3}$.
(c) Find the point P of interception of the line l with circle K, for which the y-coordinate is less than 3.
(d) At what angle does the line l intersect the x-axis?
7. (a) Derive the base change formula for logarithms
(b) Compute $\log _{27}(81)$ and $e^{\frac{2}{3} \ln (8)}$.
(c) Solve $4 \log _{16}(x)+3 \log _{8}(x)+2 \log _{2}(x)=4$.
8. (a) Sketch the graph of $f(x)=|x+2|-|x-2|$
(b) Find the area under the graph of $f(x)$ from $x=1$ to $x=5$
(c) Find all x for which $2 \leq||x+2|-|x-2|| \leq 3$
9. (a) Define what a function is.
(b) Define the terms injective and surjective for functions.
(c) For the function $f(x)=x^{2}$ find the pre-image of $(2,4] \cup[5,25)$. Write your answer as a union of intervals.
10. Let $f(x)=\frac{x^{3}+x}{x^{2}+2 x+1}$.
(a) Find the zeros and vertical asymptotes of $f(x)$. Justify your answer.
(b) What is the behaviour of $f(x)$ near $\pm \infty$?
(c) Where is $f(x)$ positive? Express your answer as an interval.
(d) Sketch the graph of $f(x)$.

BLANK PAGE

BLANK PAGE

BLANK PAGE

BLANK PAGE

