DO NOT TURN OVER UNTIL INSTRUCTED TO DO SO.

NO CALCULATORS PERMITTED.

EXAM TIME IS 170 MINUTES.

THE EXAM CONSISTS OF 10 QUESTIONS.

Your name:			-
Your SID:			

Your Section and GSI: _____

Question 1	/ 20
Question 2	/ 20
Question 3	/ 20
Question 4	/ 20
Question 5	/ 20
Question 6	/ 20
Question 7	/ 20
Question 8	/ 20
Question 9	/ 20
Question 10	/ 20
Total	/ 200

- 1. Evaluate the following expressions
 - (a) $\sin(135^\circ)$
 - (b) $\cos(\frac{5\pi}{3})$
 - (c) $\cot(\frac{\pi}{4})$
 - (d) $\sin^{-1}(\sin(\frac{7\pi}{8}))$
 - (e) $\cos(\tan^{-1}(\frac{1}{3}))$

- 2. (a) Derive the double-angle formula for cosine from the addition theorems.
 - (b) Use (a) to derive the half-angle formulae for sine and cosine.
 - (c) Compute $\sin(\frac{45^{\circ}}{2})$.

- 3. Let A, B, C be the angles of a triangle and a, b, c the lengths of the opposite sides respectively.
 - (a) Write down the law of sines and explain how to derive it.
 - (b) Assuming a = 5, $A = \frac{\pi}{6}$ and $B = \frac{\pi}{8}$ find the other angles and sidelengths of the triangle. (Note: You may use your result from Question 2)

- 4. (a) Let $f(x) = \frac{e^x e^{-x}}{2}$. Sketch the graph of f(x).
 - (b) Use the graph to explain why f(x) is invertible.
 - (c) Is f(x) an even or odd function?
 - (d) Find the inverse of f(x).

- 5. (a) Sketch the graphs of sin(x), cos(x) and tan(x).
 - (b) How many zeros does $\sin(x)$ have in the interval $(\pi, \frac{27\pi}{2}]$?
 - (c) Find the amplitude and the period of the function $f(x) = \frac{1}{2} + \frac{1}{2}\sin(\frac{\pi}{2}x \pi)$.
 - (d) Sketch the function f(x).

•

- (a) Show that $\tan^2(\theta) + 1 = \sec^2(\theta)$
- (b) Show using the addition theorem for sine and cosine that

$$\tan(\theta_1 + \theta_2) = \frac{\tan(\theta_1) + \tan(\theta_2)}{1 - \tan(\theta_1)\tan(\theta_2)}$$

(c) Use b) to find an expression for $\tan(\theta_1 - \theta_2)$.

- 6. (a) Write down the equation for a circle K with centre C: (2,3) and radius 2.
 - (b) Write down the equation of the line l that passes through C and has gradient $-\sqrt{3}$.
 - (c) Find the point P of interception of the line l with circle K, for which the y-coordinate is less than 3.
 - (d) At what angle does the line l intersect the x-axis?

- 7. (a) Derive the base change formula for logarithms
 - (b) Compute $\log_{27}(81)$ and $e^{\frac{2}{3}\ln(8)}$.
 - (c) Solve $4\log_{16}(x) + 3\log_8(x) + 2\log_2(x) = 4$.

- 8. (a) Sketch the graph of f(x) = |x + 2| |x 2|
 - (b) Find the area under the graph of f(x) from x = 1 to x = 5
 - (c) Find all x for which $2 \le ||x+2| |x-2|| \le 3$

- 9. (a) Define what a function is.
 - (b) Define the terms injective and surjective for functions.
 - (c) For the function $f(x) = x^2$ find the pre-image of $(2, 4] \cup [5, 25)$. Write your answer as a union of intervals.

10. Let $f(x) = \frac{x^3 + x}{x^2 + 2x + 1}$.

- (a) Find the zeros and vertical asymptotes of f(x). Justify your answer.
- (b) What is the behaviour of f(x) near $\pm \infty$?
- (c) Where is f(x) positive? Express your answer as an interval.
- (d) Sketch the graph of f(x).